
                                                                                           

PRACTICAL WORK BOOK 
    For Academic Session 2014 

 
 
 
 

           PROGRAMMING LANGUAGES
    (EL-255) For S.E(EL) 

 
 
 
 
 
 
 
 
 

     Name: 
    Roll Number: 
    Batch: 
    Department:  
    Year: 

 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    
                 

Department of Electronic Engineering 
N.E.D. University of Engineering & Technology, Karachi –75270, Pakistan 



                                                                                           

LABORATORY WORK BOOK 
 
FOR THE COURSE 
 
EL-255 PROGRAMMING LANGUAGES
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Prepared By: 
 
 

Naveera Sami (Lecturers)  & Marium Ahmed (Lecturers) 
 
 
 
 
 
 
 
 
 
 
 
 

Reviewed By: 
 
 

Dr. Ghous Bakhsh Narejo (Associate Professor) 
 
 
 
 
 
 
 
 
 
 
 
 

Approved By: 
 
 

The Board of Studies of Department of Electronic Engineering 



                                                                                           

  
 
 
 
 
 

This work book is specially designed to help the students to generate their own logic for the 
 
accomplishment of the assigned tasks. Every lab is provided with the syntax of the statements  
 
or commands which will be used to make the programs of exercises. In order to facilitate the  
 
students some program segments are also provided explaining the use of commands. For a  
 
wide scope of  usage of the commands several examples are also given so that the students  
 
can understand how to use the commands. 

  
The conditions, limitations and memory allocation are also mentioned where necessary. This  
 
book starts the programming of C Language from the scratch and covers most of the  
 
programming structures of C-Language. For some commands or structures more than one lab  
 
are designed so that the students can thoroughly understand their use. This lab book leads the  
 
students to the Object Oriented Programming C++. One lab on Object Oriented Programming  
 
C++ is given in the last which gives the basic idea of OOP. 



                                                                                           

Programming Languages 

 
CONTENTS 

 
 

 
Lab# 

 
Dated 

 
List of Experiments 

 
Page # 

 
Remarks 

      
1 

 Introduction of Turbo C IDE and Programming Environment            
01 

 

 2   C Building Blocks 06  

3   Looping constructs in C-Language 09  

4   Nested looping 012  

5   Decision making the if and if-else structure        015  

6   Decision making the Switch case and conditional operator        017  

7   Debugging and Single-Stepping of C Programs        019  

8   Functions in C-Language programming  022  

9   Preprocessor Directives 025  

10   Arrays in C (single dimensional) 027  

11   Arrays in C (Multidimensional) 029  

12   Learning Text and Graphics modes of display in C 030  

13  Structures 032  

14  Pointers in C-Language 034  

15  Pointers with arrays and function 036  

16  Filing in C-Language 038  

17  Introduction to Object Oriented Programming C++ 041  

 
 



Programming Languages Lab No. 01 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

         1 

 
 

Lab No. 01 
 
 

OBJECT 
 
 

Introduction of Turbo C IDE and Programming Environment 
 
 

THEORY 
 
 

The Development Environment - Integrated Development Environment (IDE): 
The Turbo C compiler has its own built-in text editor. The files you create with text editor are 
called source files, and for C++ they typically are named with the extension .CPP, .CP, or .C. 

 
 

The C Developing Environment, also called as Programmer’s Platform, is a screen display 
with windows and pull-down menus. The program listing, error messages and other 
information are displayed in separate windows. The menus may be used to invoke all the 
operations necessary to develop the program, including editing, compiling, linking, and 
debugging and program execution. 

 
 
 
 

 
 
 
 
 
 
 
 

Invoking the IDE 
To invoke the IDE from the windows you need to double click the TC icon 
in the directory c:\tc\bin. 

The alternate approach is that we can make a shortcut of tc.exe on the desktop. This makes you 
enter the IDE interface, which initially displays only a menu bar at the top of the screen 

and a status line below will appear. The menu bar displays the menu names and the status line 
tells what various function keys will do. 



Programming Languages Lab No. 01 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

         2 

 
 
 
 
 

Default Directory 
The default directory of Turbo C compiler is c:\tc\bin. 

 
 

Using Menus 
If the menu bar is inactive, it may be invoked by pressing the [F10] function key. To select 
different menu, move the highlight left or right with cursor (arrow) keys. You can also revoke 
the selection by pressing the key combination for the specific menu. 

 
 

Opening New Window 
To type a program, you need to open an Edit Window. For this, open file menu and click 
“new”. A window will appear on the screen where the program may be typed. 

 
 
 

 
 

Writing a Program 
When the Edit window is active, the program may be typed. Use the certain key combinations 
to perform specific edit functions. 

 
 

Saving a Program 
To save the program, select save  command from the file  menu. This function can also be 
performed by pressing the [F2] button. A dialog box will appear asking for the path and name 
of the file. Provide an appropriate and unique file name. You can save the program after 
compiling too but saving it before compilation is more appropriate. 

 
 

Making an Executable File 
The source file is required to be turned into an executable file. This is called “Making” of the 
.exe file. The steps required to create an executable file are: 

 
 

1. Create a source file, with a .c extension. 
 

2. Compile the source code into a file with the .obj extension. 
 

3. Link your .obj file with any needed libraries to produce an executable program. 



Programming Languages Lab No. 01 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

         3 

 
 
All the above steps can be done by using Run option from the menu bar or using key 
combination Ctrl+F9 (By this linking & compiling is done in one step). 

 
 
Compiling the Source Code 
Although the source code in your file is somewhat cryptic, and anyone who doesn't know C 
will struggle to understand what it is for, it is still in what we call human-readable form. But, 
for the computer to understand this source code, it must be converted into machine-readable 
form. This is done by using a compiler. Hence, compiling is the process in which source code 
is translated into machine understandable language. 

 
 
It can be done by selecting Compile option from menu bar or using key combination Alt+F9. 

 
 
Creating an Executable File with the Linker 
After your source code is compiled, an object file is produced. This file is often named with 
the extension .OBJ. This is still not an executable program, however. To turn this into an 
executable program, you must run your linker. C programs are typically created by linking 
together one or more OBJ files with one or more libraries. A library is a collection of linkable 
files that were supplied with your compiler. 

 
 
 
Compiling and linking in the IDE 
In the Turbo C IDE, compiling and linking can be performed together in one step. There are 
two ways to do this: you can select Make EXE from the compile menu, or you can press the 
[F9] key. 

 
 
Executing a Program 
If the program is compiled and linked without errors, the program is executed by selecting 
Run from the Run Menu or by pressing the [Ctrl+F9] key combination. 

 
 
The Development Cycle 
If every program worked the first time you tried it that would be the complete development 
cycle: Write the program, compile the source code, link the program, and run it. 
Unfortunately, almost every program, no matter how trivial, can and will have errors, or bugs, 
in the program. Some bugs will cause the compile to fail, some will cause the link to fail, and 
some will only show up when you run the program. 

 
 
Whatever type of bug you find, you must fix it, and that involves editing your source code, 
recompiling and relinking, and then rerunning the program. 



Programming Languages Lab No. 01 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

         4 

 
 

 
 
 
Correcting Errors 
If the compiler recognizes some error, it will let you know through the Compiler window. 
You’ll see that the number of errors is not listed as 0, and the word “Error” appears instead of 
the word “Success” at the bottom of the window. The errors are to be removed by returning to 
the edit window. Usually these errors are a result of a typing mistake. The compiler will not 
only tell you what you did wrong; they’ll point you to the exact place in your code where you 
made the mistake. 

 
 
 
 
 
Exiting IDE 
An Edit window may be closed in a number of different ways. You can click on the small 
square in the upper left corner, you can select close from the   window menu, or you can press 
the [Alt][F3] combination. To exit from the IDE, select 
[Alt][X] Combination. 

 
 

EXERCISE 

Exit from the File Menu or press 

 
 
1.  Type the following program in C Editor and execute it. Mention the Error. 

void main(void) 
{ 

printf(“ This is my first program in C   ”); 
} 



Programming Languages Lab No. 01 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

         5 

 
 
2. Add the following line at the beginning of the above program. Recompile the 

program. What is the output? 
#include<stdio.h> 

 

 
 
 
 
 
 
 
 
3. Make the following changes to the program. What Errors are observed? 

i. Write Void instead of void . 
 

 
 
 
 
 
 
 
 

ii. write void main (void); 
 
 
 
 
 
 
 
 
 
 

iii. Remove the semi colon ‘;’. 
 

 
 
 
 
 
 
 
 

iv. Erase any one of brace ‘{’ or ‘}’. 



Programming Languages Lab No. 02 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

         6 

 
 
 
 

Lab No. 02 
 
 
 
 
OBJECT 

 
 
C Building Blocks 

 
 

THEORY 
 
 
In any language there are certain building blocks: 

• Constants 
• Variables 
• Operators 
• Methods to get input from user(scanf( ), getch( ) etc.) 
• Methods to display output (Format Specifier, Escape Sequences etc.)  etc. 

 
 
Format Specifiers 
Format Specifiers tell the printf statement where to put the text and how to display the text. 
The various format specifiers are: 

%d =>  integer 
%c =>  character 

%f => float etc. 
 
 
Variables and Constants 
If the value of an item is to be changed in the program then it is a variable. If it will not 
change then that item is a constant. The various variable types (also called data type) in C are: 
int, float, char, long ,double etc they are also of the type signed or unsigned. 

 
 
Escape Sequences 
Escape Sequence causes the program to escape  from the normal interpretation of a string, so 
that the next character is recognized as having a special meaning. The back slash “\” character 
is called the  Escape Character” 

\n => new line 
\t => tab 

\b => back space 
\r => carriage return 
\” => double quotations 
\\ => back slash   etc. 

. The escape sequence includes the following: 

 
 
 
 
 
Taking Input From the User 
The input from the user can be taken by the following techniques: scanf( ), getch( ), getche( ), 
getchar( ) etc. 



Programming Languages Lab No. 02 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

         7 

 
 
Operators 
There are various types of operators that may be placed in three categories: 
Basic: +   - * / % 
Assignment:  =   +=  -=   *=   /= %= 

(++, -- may also be considered as assignment operators) 
Relational:  <   >   <=   >=   ==   != 

 
 
Logical:  && , || , ! 
EXERCISE 

 
 
1.  Write a program which shows the function of each escape sequence character. 

eg  printf(“alert ring bell rings like \a\a\a\a\a\a\a\a\a\a\a\a\a\a”); 
printf(“the tab is inserted like \t this”);etc 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Write down C statements to perform the following operations: 

i.  z = 4.2(x+y)5/z – 0.52x/(y+z) 
(x+y) 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ii.  x = a 2 +2ab+b2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. What will be the out put of the mix mode use of integers and float. 

a=5/9; 



  

  

Programming Languages Lab No. 02 
NED University of Engineering and Technology- Department of Electronics Engineering 

 
 
 
 

b=5.0/9; 
printf(“%f,%f”,a,b); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. What will be the output if a=5, 
printf(“%d”,++a); 
printf(“%d”,a++); 

 
 
 
 
 
 
 
 
 
 
 
 
 

5. Write some simple statements to check the working of logical and relational 
operators. 

 
 
 
 
 
 
 
 
 
 
 
 
 

6. Point out the Errors, if any, in the following C statements: 
 
 
 

(a). 3.14 * r * r * h = vol_of_cyl ; 
 
 
 
 
 

(b). volume = 3.14 * r ^ 2 * h ; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8 



9

Programming Languages  Lab No.03 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 
 

Lab No. 03 
 
 
OBJECT 

 
 
Looping constructs in C-Language 

 
 

THEORY 
 
 
Types of Loops 
There are three types of Loops: 

1)   for Loop 
i. 
ii. 

2)   while Loop 
i. 
ii. 

 
 
simple for loop 
nested for loop 
 
 
simple while loop 
nested while loop 

 
 

3)   do - while Loop 
i. 

ii. 
simple do while loop 
nested do while loop 

 
 
Nesting may extend these loops. 

 
 
 
The for Loop 
for(initialize(optional);condition(compulsory);increment(optio 
nal) 
{ 

Body of the Loop; 
} 

This loop runs as long as the condition in the center is true. Note that there is no semicolon 
after the “for” statement. If there is only one statement in the “for” loop then the braces may 
be removed. If we put a semicolon after the for loop instruction then that loop will not work 
for any statements. 

 
 
 
The while Loop 
while(condition is true) 
{ 

Body of the Loop; 
} 
This loop runs as long as the condition in the parenthesis is true. Note that there is no 
semicolon after the “while” statement. If there is only one statement in the “while” loop then 
the braces may be re moved. 



10

Programming Languages  Lab No.03 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 

 
The do-while Loop 
do 
{ 

Body of the Loop; 
} 
while(condition is true); 
This loop runs as long as the condition in the parenthesis is true. Note that there is a 
semicolon after the “while” statement. The difference between the “while” and the “do-while” 
statements is that in the “while” loop the test condition is evaluated before the loop is 
executed, while in the “do” loop the test condition is evaluated after the loop is executed. This 
implies that statements in a “do” loop are executed at least once. However, the statements in 
the “while” loop are not executed if the condition is not satisfied.. 

 
 
EXERCISE 

 
 
1.  Write down the output of the following program statements 

i. for (i=1; i<=10;i++) 
printf(“%d \n”,i); 

 
 
 
 
 
 
 
 
 
 
ii. int a = 10, b = 10; 

for(inti=1;i<=a;i++) 
{ 

a++; 
b--; 
printf(“a = %d,b=%d\t”,a,b); 

} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2  Write a program to generate a series of first 50 even numbers 



11

Programming Languages  Lab No.03 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 
 
 
 
 
 
 
3.  Write a program to generate tables from 2 to 20 with first 10 terms 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.  Write two program segments, which may be used to input a sentence. 

Terminate when Enter key is pressed. (Use for and while loops). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Write a program to enter the numbers till the user wants and at the end it should display 
the count of positive, negative and zeros entered. 

 
 
 
 
 
 
 
 
 
 
 
 
 
6. Write a program to find the range of a set of numbers. Range is the difference between 
the smallest and biggest number in the list. 



12

Programming Languages  Lab No.04 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 
 
 
 

Lab No.04 
 
 

OBJECT 

Nested looping 

THEORY 

Types of Loops 
There are three types of Loops: 

1)   for Loop 
i. 
ii. 

2)   while Loop 
i. 
ii. 

 
 
simple for loop 
nested for loop 
 
 
simple while loop 
nested while loop 

 
 

3)   do - while Loop 
i. simple do while loop 

ii. nested do while loop 
Nesting may extend these loops. 

 
 
 
The Nested for Loop 
for(initialize;condition;increment) 
{ 

for(initialize;condition;increment) 
{ 
Body of the loop; 
} 

} 
The inner loop runs as many times as there is the limit of the condition of the external loop. 
This loop runs as long as the condition in the parenthesis is true. We can nest many loops 
inside as there is the requirement. 

 
 
 
The nested while Loop 
while(condition is true) 
{ 

while(condition is true) 
{ 
Body of the loop; 
} 

Body of the loop; 
} 
The inner loop runs as many times as there is the limit of the condition of the external loop. 
This loop runs as long as the condition in the parenthesis is true. We can nest many loops 
inside as there is the requirement. 



13

Programming Languages  Lab No.04 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 
 
 
 
The Nested do-while Loop 
do 
{ 

do 
{ 
body of the loop; 
} 
while(condition is true); 

 
body of the loop; 
} 
while(condition is true); 

 
 
 
This loop runs as long as the condition in the parenthesis is true. Note that there is a 
semicolon after the “while” statement. The difference between the “while” and the “do-while” 
statements is that in the “while” loop the test condition is evaluated before the loop is 
executed, while in the “do” loop the test condition is evaluated after the loop is executed. This 
implies that statements in a “do” loop are executed at least once. The inner loop runs as many 
times as there is the limit of the condition of the external loop. This loop runs as long as the 
condition in the parenthesis is true. We can nest many loops inside as there is the requirement. 

 
 
 
EXERCISE 

 
 
1.  Write down the output of the following program statements 

i. for (int a=1;j=1; j<=5;j++) 
for (i=1; i<=5;i++) 

{ 
printf(“%d\n”,a); 
a++; 

 
 

} 
 
 
 
 
 
 
 
 
 
 
 
 
2.Write a program to print a series of first 50 odd numbers. 



  

  

Programming Languages     Lab No.04 
NED University of Engineering and Technology- Department of Electronics Engineering 

 
 
 
 
 
 
 
 
 
 
3.  Write a program which Prints the following pattern up to 10 lines 

0 
111 

22222 
3333333 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Write a program to produce the following output: 

 
 

A B C D E F G F E D C B A A 
B C D E F F E D C B A 
A B C D E  E D C B A 
A B C D   D C B A 
A B C    C B A 
A B     B A 
A      A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14 



33

  

  

Programming Languages Lab No. 05 
NED  University of Engineering and Technology- Department of Electronics Engineering 

 
 

Lab No.05 
 
 

OBJECT 
 
 
Decision making the ifand if-else structure 

 
 
THEORY 

 
 
Normally, your program flows along line by line in the order in which it appears in your 
source code. But, it is sometimes required to execute a particular portion of code only if 
certain condition is true; or false i.e. you have to make decision in your program. There are 
three major decision making structures. The ‘if’ statement, the if-else statement, and the 
switch statement. Another less commonly used structure is the conditional operator. 

 
 
The if statement 
The if   statement enables you to test for a condition (such as whether two variables are equal) 
and branch to different parts of your code, depending on the result or the conditions with 
relational and logical operators are also included.. 
The simplest form of an 
if (expression) 

statement; 

if  statement is: 

 
 
The if-else statement 
Often your program will want to take one branch if your condition is true, another if it is false. 
If only one statement is to be followed by the if or else condition then there is no need of 
parenthesis. The keyword 
if (expression) 

{ statement/s; 
} 

else can be used to perform this functionality: 

 
 
else  

{ 
statement/s; 
} 

 
 
 
EXERCISE 

 
 
1.Write a program which takes three sides a, b and c of a triangle input and calculates its area 
if these conditions are satisfied a+b>c, b+c>a, a+c>b 
(Help a= vs(s-a)(s-b)(s-c), where s=(a+b+c)/2 



33

  

  

Programming Languages Lab No. 05 
NED  University of Engineering and Technology- Department of Electronics Engineering 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
2.  Write a program that inputs an integer – determine if it is even or odd. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Write a program which takes a character input and checks whether it is vowel or consonant 

 
 
 
 
 
 
 
 
 
 
 
 
 
4. According to the Gregorian calendar, it was Monday on the date 01/01/1900. If any year 

st 
is input through the keyboard write a program to find out what is the day on 1 
of this year. 

January 

 



33

  

  

Programming Languages  Lab No. 06 
NED  University of Engineering and Technology- Department of Electronics Engineering 

 
 
 
 

Lab No.06 
 
 
 
 
OBJECT 

 
 
Decision making the Switch case and conditional operator. 

 
 

THEORY 
 
 
Normally, your program flows along line by line in the order in which it appears in your 
source code. But, it is sometimes required to execute a particular portion of code only if 
certain condition is true; or false i.e. you have to make decision in your program. There are 
three major decision making structures. The ‘if’ statement, the if-else statement, and the 
switch statement. Another less commonly used structure is the conditional operator. 

 
 
 
The switch Statement 
Unlike  if  , which evaluates one value, switch statements allow you to branch on any of a 
number of different values. There must be break at the end of the statements of each case 
otherwise all the preceding cases will be executed including the default condition. The general 
form of the  switch statement is: 
switch (identifier variable) 
{ 
case identifier One: statement; 

 
 
case identifier Two: statement; 

 
 
.... 
case identifier N: statement; 

 
 
default: statement; 
} 

break; 
 
 
break; 
 
 
 
break; 

 
 
Conditional Operator 
The conditional operator ( ?:  ) is C’s only ternary operator; that is, it is the only operator to 
take three terms. 

 

 
The conditional operator takes three expressions and returns a value: 
(expression1) ? (expression2) : (expression3) 

 
 
It replaces the following statements of if else structure 
If(a>b) 
c=a; 
else 
c=b; 
can be replaced by 
c=(a>b)?:a:b 



33

  

  

Programming Languages  Lab No. 06 
NED  University of Engineering and Technology- Department of Electronics Engineering 

 

 
 
 
This line is read as "If expression1 is true, return the value of expression2; otherwise, return 
the value of expression3." Typically, this value would be assigned to a variable. 

 
 

EXERCISE 
 
 
1.Write a program which takes a text input counts total number of vowels, consonants and 
other special characters and prints the result 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Write a program to make a simple calculator which should be able to do +,-,*,/,% 
operations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Write a program which takes 10 integers as input and prints the largest one. 



33

Programming Languages Lab No. 07 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 

Lab No. 07 
 
 

OBJECT 
 
 
Debugging and Single-Stepping of C Programs 

 
 

THEORY 
 
 
One of the most innovative and useful features of Turbo C++ is the integration of debugging 
facilities into the IDE. 

 
 
Even if your program compiles perfectly, it still may not work. Such errors that cause the 
program to give incorrect results are called Logical Errors. The first thing that should be done 
is to review the listing carefully. Often, the mistake will be obvious. But, if it is not, you’ll 
need the assistance of the Turbo C Debugger. 

 
 
One Step at a Time 
The first thing that the debugger can do for you is slow down the operation of the program. 
One trouble with finding errors is that a typical program executes in a few milliseconds, so all 
you can see is its final state. By invoking C++’s single-stepping capability, you can execute 
just one line of the program at a time. This way you can follow where the program is going. 

 
 
Consider the following program: 

void main(void) 
{ 

int number, answer=-1; 
number = -50; 
if(number < 100) 

if(number > 0) 
answer = 1; 

else 
answer = 0; 

printf(“answer is %d\n”, answer); 
} 

 
 
Our intention in this program is that when number  is between 0 and 100, answer  will be 1, 
when the number   is 100 or greater, answer   will be 0  ,  and when number   is less than 0, 
answer will retain its initialized value of –1. When we run this program with a test value of 
-50 for 
–1. 

number, we find that answer is set to 0 at the end of the program, instead of staying 

 
 
We can understand where the problem is if we single step through the program. To do this, 
simply press the [F7] key. The first line of the program will be highlighted. This highlighted 
line is called the run bar . Press [F7] again. The run bar will move to the next program line. 
The run bar appears on the line about to be executed. You can execute each line of the 
program in turn by pressing [F7]. Eventually you’ll reach the first 

 
 

if (num < 100 ) 
 
 
 
 

ifstatement: 



33

Programming Languages Lab No. 07 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 
This statement is true (since number is –50); so, as we would expect the run bar moves to the 
second if statement: 

 
 

if(num>0) 
 
 
This is false. Because there’s no else matched with the second if, we would expect the run bar 
to the printf( ) statement. But it doesn’t! It goes to the line 

 
 

answer = 0; 
 
 
Now that we see where the program actually goes, the source of the bug should become clear. 
The else  goes with the last if, not the first if as the indenting would lead us to believe. So, the 
else  is executed when the second 
need to put braces around the second 

if statement is false, which leads to erroneous results. We 
if, or rewrite the program in some other way. 

 
 
Resetting the Debugger 
Suppose you’ve single stepped part way through a program, and want to start over at the 
beginning. How do you place the run bar at the top of the listing? You can reset the 
debugging process and initialize the run bar by selecting the Program Reset option from the 
Run menu. 

 
 
Watches 
Single stepping is usually used with other features of the debugger. The most useful of these 
is the watch (or watch expression). This lets you see how the value of variable changes as the 
program runs. To add a watch expression, press [Ctrl+F7] and type the expression. 

 
 
Breakpoints 
It often happens that you’ve debugged part of your program, but must deal with a bug in 
another section, and you don’t want to single-step through all the statements in the first part to 
get to the section with the bug. Or you may have a loop with many iterations that would be 
tedious to step through. The way to do this is with a breakpoint. A breakpoint marks a 
statement where the program will stop. If you start the program with [Ctrl][F9], it will execute 
all the statements up to the breakpoint, then stop. You can now examine the state of the 
variables at that point using the watch window. 

 
 
Installing breakpoints 
To set a breakpoint, first position the cursor on the appropriate line. Then select Toggle 
Breakpoint from the Debug menu (or press [Ctrl][F8]). The line with the breakpoint will be 
highlighted. You can install as many breakpoints as you want. This is useful if the program 
can take several different paths, depending on the result of if statements or other branching 
constructs. 

 
 
Removing Breakpoints 
You can remove a single breakpoint by positioning the cursor on the line with the breakpoint 
and selecting Toggle breakpoint from the Debug menu or pressing the [Ctrl][F8] combination 
(just as you did to install the breakpoint). The breakpoint highlight will vanish. 

 
 
You can all set Conditional Breakpoints that would break at the specified value only. 



33

Programming Languages Lab No. 07 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 

EXERCISE 
 
 
1. Add watches to the entire variable in a program and follow their values line by 

line. 
 
 
 
 
 
 
 
 
 
 
2. Type in the following program and find out the error using the Turbo C Debugger. 

 
 

#include<stdio.h> 
void main(void) 
{ 

int a=4,b=5,i; 
for(i=1;i<=10;i++); 

{ 
a++; 
b--; 
} 
printf(“%d”,i); 
printf(“%d”,a); 
printf(“%d”,b); 

} 
Mention the error. Correct this program by locating the error through the debugger 
and rewrite the correct program statements 



33

Programming Languages  Lab No. 08 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 

Lab No. 08 
 
 

OBJECT 
 
 
Functions in C-Language programming 

 
 
THEORY 
Functions are used normally in those programs where some specific work is required to be 
done repeatedly and looping fails to do the same. 
Three things are necessary while using a function. 

 
 
i. Declaring a function or prototype: 
The general structure of a function declaration is as follows: 

return_type function_name(arguments); 
 
 
Before defining a function, it is required to declare the function i.e. to specify the function 
prototype. A function declaration is followed by a semicolon ‘ ;’. Unlike the function 
definition only data type are to be me ntioned for arguments in the function declaration. 

 
 
ii. Calling a function: 
The function call is made as follows: 

return_type = function_name(arguments); 
 
 
ii. Defining a function: 
All the statements or the operations to be performed by a function are given in the function 
definition which is normally given at the end of the program outside the main. 
Function is defined as follows 

return_type function_name(arguments) 
{ 
Statements; 
} 

 
 
There are certain functions that you have already used e.g:getche( ), clrscr( ), printf( ), scanf( ) 
etc. 

 
 
There are four types of functions depending on the return type and arguments: 

• Functions that take nothing as argument and return nothing. 
 

• Functions that take arguments but return nothing. 
 

• Functions that do not take arguments but return something. 
 

• Functions that take arguments and return something. 
 
 
A function that returns nothing must have the return type “void”. If nothing is specified then 
the return type is considered as “int”. 



33

Programming Languages  Lab No. 08 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 

EXERCISE 
 
 
1. Write a program to print the find the sum of the given series, take first 8 terms 
A=1! +2! +3! +4! +…….. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Write a program to find 
a. Surface area (A=4pr  2 ) 
b. volume(v=4/3 p  3 ) 
of a sphere using functions make a function for finding powers of radius. 



33

Programming Languages  Lab No. 08 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 
3. Write a program using functions to evaluate up to 8 terms 

 

 
 
 
sin(x)= x -  x 3 +  x5  -  x7  +  x9  - ……. 
3! 5! 7! 9! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Write a function to compute the distance between two points and use it to develop 
another function that will compute the area of the triangle whose vertices are 
A(x1, y1), B(x2, y2), and C(x3, y3). Use these functions to develop a function 
which returns a value 1 if the point (x, y) lines inside the triangle ABC, otherwise a value 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Given three variables x, y, z write a function to circularly shift their values to right. 
In other words if x = 5, y = 8, z = 10 after circular shift y = 5, z = 8, x =10 after 
circular shift y = 5, z = 8 and x = 10. Call the function with variables a, b, c to circularly 
shift values. 



33

  

  

Programming Languages Lab No. 09 
NED  University of Engineering and Technology- Department of Electronics Engineering 

 
 
 

Lab No.09 
 
 

OBJECT 
Preprocessor Directives 

 
 

THEORY 
 
 
Preprocessor directives are actually the instructions to the compiler itself. They are not 
translated but are operated directly by the compiler. 
The most common preprocessor directives are 
i. include directive 
ii. define directive 

 
 
i. include directive: The include directive is used to include files like as we include header 
files in the beginning of the program using #include directive like 

 

 
#include<stdio.h> 
#include<conio.h> 

 
 
ii. define directive: It is used to assign names to different constants or statements which are 
to be used repeatedly in a program. These defined values or statement can be used by main or 
in the user defined functions as well. 
They are used for 

a. defining a constant b. 
defining a statement 

c. defining a mathematical expression 

for example 

#define pi 3.142 
#define p printf(“enter a new number”); 
#define for(a) (4/3.0)*pi*(a*a*a); 

 
 
 
They are also termed as macros. 

 
 
1. Write a program which calculates and returns the area and volume of a sphere using define 
directive . 



33

  

  

Programming Languages Lab No. 09 
NED  University of Engineering and Technology- Department of Electronics Engineering 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Write a program which takes four integers a, b, c, d as input and prints the largest one using 
define directive. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.  Which of the following are correctly formed #define statements: #define INCH PER FEET 12 

#define SQR (X) ( X * X ) 
#define SQR(X) X * X 
#define SQR(X) ( X * X ) 



33

  

  

Programming Languages Lab No. 10 
NED  University of Engineering and Technology- Department of Electronics Engineering 

 
Lab No. 10 

 
 

OBJECT 
 
 
Arrays in C (one dimensional) 

 
 
THEORY 

 
 
An array is a collection of data storage locations, each of which holds the same type of data. 
Each storage location is called an element of the array. You declare an array by writing the 
type, followed by the array name and the subscript. The subscript is the number of elements in 
the array, surrounded by square brackets. For example, 

long LongArray[25]; 
declares an array of 25 long integers, named Long Array. When the compiler sees this 
declaration, it sets aside enough memory to hold all 25 elements. Because each long integer 
requires 4 bytes, this declaration sets aside 100 contiguous bytes of memory 

 
 

EXERCISE 
 
 
1. Write a program that takes input for array int a[5] and array int b[5] and exchanges 

their values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Write a program that takes 10 integers as input and prints the largest integer and its 

location in the array. 



33

  

  

Programming Languages Lab No. 10 
NED  University of Engineering and Technology- Department of Electronics Engineering 

 

 
3. Write a program which takes a string as input and counts total number of vowels in that. 

 
 
 
 
 
 
 
 
 
 
 
 
 
4. Write a program to sort an integer array in descending order. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Write a program to copy the contents of one array into another in the reverse order. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. What would be the output of the following Program: 

 
 

main( ) 
{ 

static int a[5] ; 
int i ; 
for ( i = 0 ; i <= 4 ; i++ ) 
printf ( "\n%d", a[i] ) ; 

} 



33

  

  

Programming Languages  Lab No. 11 
NED  University of Engineering and Technology- Department of Electronics Engineering 

 
Lab No.11 

 
 

OBJECT 
Arrays in C (Multidimensional) 

 
 
THEORY 

 
 
A Multidimensional  array is a collection of data storage locations, each of which holds the 
same type of data. Each storage location is called an element of the array. You declare an 
array by writing the type, followed by the array name and the subscript. The subscript is the 
number of elements in the array, surrounded by square brackets. For example, 

int a[5][10] 
declares an array of 50 integers, named a. Its declaration shows that array a comprises of  5 
one dimensional arrays and each one dimensional array contains 10 elements. 
When the compiler sees this declaration, it sets aside enough memory to hold all 50 elements. 
Because each integer requires 2 bytes, this declaration sets aside 100 contiguous bytes of 
memory. 

 
 

EXERCISE 
 
 
1.  Write a program that adds up two 4x4 arrays and stores the sum in third array. 

 
 
 
 
 
 
 
 
 
 
 
 
 

2. Write a program which takes names of five countries as input and prints them in 
alphabetical order. 

 
 
 
 
 
 
 
 
 
 
 
 
 
3. A 6 x 6 matrix is entered through the keyboard and stored in a 2-dimensional array mat[7][7]. 
Write a program to obtain the Determinant values of this matrix. 



33

  

  

Programming Languages Lab No. 12 
NED  University of Engineering and Technology- Department of Electronics Engineering 

 
 

Lab No. 12 
 
 

OBJECT 
 
 
Learning Text and Graphics modes of display in C 

 
 

THEORY 
 
 
There are two ways to view the display screen in Turbo C graphics model: 

 
 

• The Text Mode 
• The Graphics Mode. 

 
 
The Text Mode 
In the Text Mode, the entire screen is viewed as a grid of cells, usually 25 rows by 80 
columns. Each cell can hold a character with certain foreground and background colors (if the 
monitor is capable of displaying colors). In text modes, a location on the screen is expressed 
in terms of rows and columns with the upper left corner corresponding to (1,1), the column 
numbers increasing from left to right and the row numbers increasing vertically downwards. 

 
 
The Graphics Mode 
In the Graphics Mode, the screen is seen as a matrix of pixels, each capable of displaying one 
or more color. The Turbo C Graphics coordinate system has its origin at the upper left hand 
corner of the physical screen with the x-axis positive to the right and the y-axis positive going 
downwards. 

 
 
The ANSI Standard Codes 
The ANSI – American National Standards Institute provides a standardized set of codes for 
cursor control. For this purpose, a file named ANSI. sys is to be installed each time you turn 
on your computer. Using the config.sys file, this job is automated, so that once you’ve got 
your system set up, you don’t need to worry about it again. 

 
 
To automate the loading of ANSI . sys follow these steps: 

 
 

i. Find the file ANSI.sys in your system. Note the path. 
 

ii. Find the config.sys file. Open this file and type the following: 
 

DEVICE = path_of_ANSI.sys 
 

iii. Restart your computer. 
 
 
 
All the ANSI codes start by the character \x1B[ after which, we mention codes specific to 
certain operation. Using the #define directive will make the programs easier to write and 
understand. 



33

Programming Languages Lab No. 12 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 

EXERCISE 
 
 
1. Write a program to pop up a window on the screen 

 
 
 
 
 
 
 
 
 
 
2. Write down program statements to initialize the graphics mode of operation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Which header file is required to be included while working in (a) text mode (b) 

graphics mode? 
 
 
 
 
 
 
 
 
 
 
 
 
4. Display the use of gettext and puttext functions. 



33

Programming Languages Lab No. 13 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 

Lab No. 13 
 
 

OBJECT 

Structures 

THEORY 

If we want a group of same data type we use an array. If we want a group of elements of 
different data types we use structures. For Example: To store the names, prices and number of 
pages of a book you can declare three variables. To store this information for more than one 
book three separate arrays may be declared. Another option is to make a structure. No 
me mory is allocated when a structure  is declared. It simply defines the “form” of the 
structure. When a variable is made then memory is allocated. This is equivalent to saying that 
there is no memory for “int” , but when we de clare an integer i.e. 
is allocated. 
The structure for the above mentioned case will look like 
Struct books 
{char bookname[20]; 
float price; 
int pages;} 
struct book[50]; 

 
 
the above structure can hold information of 50 books. 

 
 
 
EXERCISE 

int var; only then me mory 

 
 
1.  Write a program to maintain the library record for 100 books with book name, 

author’s name, and edition, year of publishing and price of the book. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Write a program to make a tabulation sheet for a class of 50 students with their names, seat 

nos, marks, percentages and grades. 



33

Programming Languages Lab No. 13 
NED  University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 
 
 
 
 
 
 
 
3. Define a structure to represent a complex number in rectangular format. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Write a program that compares two given dates. To store date use structure say date 
that contains three members namely date, month and year. If the dates are equal then 
display message as "Equal" otherwise "Unequal". 

 
 
 
 
 
 
 
 
 
 
 
 
5. Point out the errors, if any, in the following Program: 

 
 

main( ) 
{ 

 
 

{ 
 
 
 
 
 

} ; 
 
 
 
 
 
 

} 

 
 
 
struct employee 
 
 
char name[25] ; 
int age ; 
float bs ; 
 
 
struct employee e ; 
strcpy ( e.name, "Hacker" ) ; 

age = 25 ; 
printf ( "\n%s %d", e.name, age ) ; 

 



Programming Languages Lab No. 14 
NED  University of Engineering and Technology- Department of Electronics Engineering

40

  

  

 
 

 
Lab No. 14 

 
 
OBJECT 

 
 
Pointers in C-Language 

 
 
THEORY 

 
 
A pointer provides a way of accessing a variable without referring to the variable 
directly. The address of the variable is used. 
The declaration of the pointer 

int *p; 
means that the expression 

p , 
 
 
*p is an 

 
 
 
 
int 

 
 
 
 
. This definition set aside two bytes in which to 

store the address of an integer variable and gives this storage space the name p. If 
instead of int we declare 

char * p; 
 

again, in this case 2 bytes will be occupied, but this time the address stored will b e 
pointing to a single byte. 

 

 
 

EXERCISE 
 
1.  Write down the number of bytes allocated for the following pointer variables: 

 

int *x; 
 
 
 
 

char *y; 
 
 
 
 

float *z; 
 
 
 
 
 
 
2. Determine the output of the following program: 

void main(void) 
{ 

int q=2; 
int *p; 
p=&q; 
*p=100; 
printf(“%d”,q); 
printf(“%p”,p); 
printf(“%d”,*p); 
printf(“%d”,*q); 
printf(“%p”,&q); 
printf(“%p”,&p); 



Programming Languages Lab No. 15 
NED  University of Engineering and Technology- Department of Electronics Engineering

40

  

  
NED University of Engineering and Technology- Department of Electronics Engineering 

 
 
 
 

} 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Determine the output of the following program: 

void main(void) 
{ 

int x=3,y=4,z=6; 
int *p1,*p2,*p3; 
p1=&x; 
p2=&y; 
p3=&z; 
*p1=*p2+*p3; 
*p1++; 
*p2--; 
*p1=(*p2)*(*p3); 
*p2=(*p2)*(*p1); 
x=y+z; 
printf(“%d”,x); 
printf(“%d”,y); 
printf(“%d”,z); 
printf(“%d”,*p1); 
printf(“%d”,*p2); 
printf(“%d”,*p3); 

 
 

} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Write a program which adds two arrays with the help of their pointers. 



40

Programming Languages Lab No. 15 
NED University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 
 
 
 

Lab No. 15 
 

 
 
OBJECT 

 
 
Pointers with arrays and function. 

 
 
THEORY 

 
 
A pointer is the most effective tool to pass an array to a function. 
If pointers are involved than a function can return  more than one values at a time. 
We have to pass only the address and size of the array to the function and we can make as 
many changes in the function as we want. for example if we want to add 5 in each array 
element using functions. Then 

 
 
void add(int *,int); 

void main(void) 
{int s[10],i; 
printf(“enter ten integers”); 
for(i=0,i<10,i++) 
{printf(“\n enter integer no %d :”,i+1); 

scanf(“%d”,&s[i]); 
} 
add(s,10); 
for(i=0,i<10,i++) 
{printf(“\n integer no %d :%d”,i+1,s[i]); 

 
 

} 
} 

void add(int *p,int x) 
{int j; 
for (j=0;j<x;j++) 
{ 
*p=*p+5; 
p++; 
} 
} 

 
 
Similarly string arrays and multidimensional arrays can also be passed to functions by 
their addresses and size. 



40

Programming Languages Lab No. 16 
NED University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 
 
 
 

EXERCISE 
 
 
1. Write a program to pass an integer array of 10 elements to a function which returns the 
same array after sorting it in descending order. Print the array. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Write a program which passes a string to a function and the function changes its case 
without using any library function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Point out the errors, if any, in the following Program: 

 

 
main( ) 
{ 

int i = 35, *z ; 
z = function ( &i ) ; 

printf ( "\n%d", z ) ; 
} 

function ( int *m ) 
{ 

return ( m + 2 ) ; 
} 



40

Programming Languages Lab No. 17 
NED University of Engineering and Technology- Department of Electronics Engineering

  

  

 

Lab No 16 
 

OBJECT 
 
 
Filing in C-Language 

 
 

THEORY 
 
 
 

Data files 
Many applications require that infor mation be “ written & read” fro m an auxiliary 
storage device. 
This information is written in the form of Data Files  . 
Data files allow us to store information permanently and to access and alter that 
information whenever necessary. 
Types of Data files 
Standard data files .(stream I/O) 
System data files.   (low level I/O) 

 
 
Standard I/O 

Easy to work with, & have different ways to handle data. 
Four ways of reading & writing data: 

1. Character I/O. 
2. String I/O. 
3. Formatted I/O. 
4. Record I/O. 

 
 
File Protocol 

1. fopen 
2. fclose 

fopen:- 
 
 

Syntax: 

 
 
It is used to open a file . 

fopen (file name , access-mode ). 
“r” open a file for reading only. 
“w” open a file for writing. 
“a” open a file for appending . 
“r+”   open an existing file for reading & writing. 
“w+”  open a new file for reading &writing. 
“a+”   open a file for reading & appending & create a new file if it does exist. 

 
 
Example:-  

#include <stdio.h> 
main 
{ 
FILE*fpt; 

 



40

Programming Languages Lab No. 18 
NED University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 

fpt = fopen (“first.txt”,”w”); 
fclose(fpt); 
} 

Establish buffer area, where the information is temporarily stored before being 
transferred b/w the computer memory & the data file. 

 
 

file is a special structure type that establishes the buffer area. 
fpt is a pointer variable that indicates the beginning of buffer area. 
fpt is called stream pointer. 
fopen stands for File Open. 
A data file must be opened before it can be created or processed. 

 
 
Standard I/O: 
Four way s of reading and writing data: 
Character I/O. 
String I/O. 
Formatted I/O. 
Record I/O. 

 
 
Character I/O: 
In normal C program we used to use getch, getchar and getche etc. 
In filling we use putc and getc. 

 
 
putc( ); 
It is used to write each character to the data file. 
Putc requires specification of the stream pointer *fpt as an argument. 

 
 
Syntax: 
putc(c, fp); 
c = character to be written in the file . 
fp = file pointer   . 
putch or  putchar  writes the I/P character to the consol while putc writes to the file. 

 
 

Example (1): 
Reading the Data File: 
#include < stdio.h > 
main( ) 
{ 

FILE*fpt; 
Char c; 
fpt = fopen ( “ star.dat”,”r”); 
if( fpt = = NULL); 
printf( “Error- cant open”); 
else 
do 

putchar(c=getc(fpt) ); 
while(c!=‘\n’ ); 



40

Programming Languages Lab No. 19 
NED University of Engineering and Technology- Department of Electronics Engineering

  

  

 
 

fclose( fpt ); 
} 

 
 
 
Exercise: 

 
 
1. What will be the output of the given program 
#include < stdio.h > 
main( ) 
{ 

FILE*fpt; 
Char c; 
fpt = fopen ( “ star.dat”,”n”); [ a new file is made 

] 
do 

putc((c=getchar( ) ); fpt ); 
while(c!=‘\n’ ); or ‘\r’ 
fclose( fpt ); 

} 
 
 
 
 
 
 
 
 
 
 
2. Write a program to store strings in a file 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Write a program segment that writes an array  to a file. 



45

Programming Languages Lab No. 17   

  

NED University of Engineering and Technology- Department of Electronics Engineering 
 

Lab No.17 
 
 
 
 
 
 

OBJECT 
 
 
Introduction to Object Oriented Programming C++. 

 
THEORY 

 
 
C++ i s a superset of C, that is, it incorporates all the operators and syntax of ordinary C, 
but adds additional features. 

 
 
Object-Oriented Programming 
Its important understands that object-oriented programming is an approach to organizing 
programs, it is not primarily concerned with the detail of program code; its focus is the 
overall structure of the program. A prerequisite for writing object oriented programs 
understands the philosophy of OOP. OOP has the greatest potential for simplify ing 
program conceptualization, coding, debugging, and maintenance. 

 
 

Object-Oriented Organization 
Object-oriented programming attempts to solve some of the procedural approach. OOP 
gives data a more central position in program organization, and ties the data more closely 
to the functions that act on it. In the procedural approach, the organizational units are 
functions. In OOP, the organizational units contain both the data and the functions that 
act on that data. These units are called objects. 

 
 
Objects 
In QOP, a program is organized into objects. As we noted, an object consists of data and 
the functions that operate on that data. In a typical situation only the functions in the 
object can access the object’s data; it cannot be accessed by functions in other objects. 

 
 

A New Vocabulary 
The functions in an object are called methods, they do something to the objects data, and 
the binding together of the data with the functions that operate on it is called 
encapsulation. The fact that the data in an object cannot be accessed by other objects is 
called data hiding Encapsulation and data hiding are key elements in OOP. 

 
 
Classes 
In OOP, objects are members of classes. A class in OOP has the same relationship to an 
object that the declaration of struct. 



45

Programming Languages Lab No. 17   

  

NED University of Engineering and Technology- Department of Electronics Engineering 
 
Inheritance 
An important feature of C++ is inheritance. Inheritance means making objects out of 
other objects. 

 
 

Classes and Objects 
Our first example demonstrates a class and an object. It models a simp le expense ledger. 
Imagine you're running a lemonade stand, and every time you buy supplies you write 
down the amount: $10.50 for lemons, $4.12 for paper cups, and so on. Our program lets 
you record such expenses on your computer 

 
 

Data 
The central data structure in this program is an array of floating point numbers to hold the 
expenses. 

 

 

Declaring a Class 
We mentioned that declaring a class is so mewhat like declaring a structure. It specifies 
what objects of this class will look like. Here's the declaration of class ledger: 

Class ledge // declaration of class ledger 
{ 

private: 
 
 
 
 
 
 
 
 
 
}; 

 
 
 
 
float list[100J; // define array for items 
int count; //define numb er of items entered 
public: 
void initCountvoid; // declare method 
void enterItem(voia);   // declare method 

 
 
Defining Methods 

 
 
Here are the definitions for the methods initCount( ), enterItem( ), and  printTotal( ). 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
void ledger:: initCount(void) // a function in class ledger 
{ // initializes count to 0 
count = 0; 
} 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

 
 
vold ledger::enterltem(void) // a function in class ledger 
{ // puts entry in list 
cout << “\nEnter amount: “; 
cin >>list[count++]; 
} 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
void ledger::printTotal(void) // a function in class ledger 
{ // prints total of all entries 
float total=0.0; 



45

Programming Languages Lab No. 17   

  

NED University of Engineering and Technology- Department of Electronics Engineering 
 
for(int j=0; j<count; j++) 
total += list[j]; 
cout <<”\n\nTotal is: " << total << “\n”; 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

 
 

The expense.cpp Example 
 
 
Lets put the C++ co mponents  we discussed above into a complete C++ program. This 
example program permits the user to record amou nts in the list and print out the total. 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
//  expense.cpp 
// object oriented expense ledger 
#include <iostream.h>. 
// for cout, cin, etc. 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
class ledger //  declaration of, class ledger 
{ 
private: 

 
 
 
 
public: 

float list[100]; // array for items 
int count; // number of items entered 
 
 
void initCount(void);  // declare function 
void enterltem( void);   // declare function 
void printTotal(void); // declare function 
}; 

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
void ledger::initCount(void) // a function in class ledger 
{ // initializes count to 0 

count = 0; 
} 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
void ledger: :interItem(void) // a function in c lass, ledger, ' 
{  // puts entry in list 

cout <<”\nEnter amount: "; 
cin >> list[count++]; 

} 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
void ledger::printTotal(void) // a function in class ledger 
{  // prints total of all entries 

float total=0.0; 
for( int j = 0; j<count; j++) 

total += list[j]; 
tout <<”\n\nTotal is: “ <<total <<"\n"; 

} 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
ledger expenses; // an instance of class ledger 



45

Programming Languages Lab No. 17   

  

NED University of Engineering and Technology- Department of Electronics Engineering 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
main( ) // main --handles user interface 
{  // uses object expenses 

char option; 
expenses.initCount( ); // initialize count 
do 

{ // display options 
cout <<"\nOptions are: e --enter expense" 

<<"\n E --print total expenses" 
<<"\n q --quit (terminate program)” 
<<"\nType option letter: “; 
cin >>option; // get option from user 
switch (option) 

{ // act on Option selected 
case 'e': expenses.enterItem( ); break; 
case 'E': expenses.printTotal( ); break; 
case 'q': break; 
default: cout <<"\nUnknown co mmand\n”; 
} 
} while(option != 'q'); 
} // end main 

 
 

Options are: e --enter expense. 
E --print total expenses 
q --quit (terminate program) 

Type option letter: e 
Enter amount: 10.97 
Options are: 
e --enter expense. 
E --print total expenses 
q --quit (terminate program 
Type option letter: E 
Total is: 99.44 

 
 
 

EXERCISE: 
 
 

1. Write a program to generate a simple calculator which can perform basic 
arithmetic operations. 



45

Programming Languages Lab No. 17   

  

NED University of Engineering and Technology- Department of Electronics Engineering 
 
 
 
 
 
 
 

2. Write a program to generate a tabulation sheet of students which includes their 
roll no, names, marks and their grades. 




