PRACTICAL WORK BOOK

For Academic Session 2014

DIGITAL ELECTRONICS
 (EL-335) For T.E (EL)

Name:

Roll Number:

Batch:

Department:

Year:

Department of Electronic Engineering
NED University of Engineering \& Technology, Karachi

LABORATORY WORK BOOK

For The Course

EL-335 Digital Electronics

Prepared By:
Nida Qureshi (Lecturer)

Reviewed By:
Mr. Muhammad Khurram Shaikh (Assistant Professor)

Approved By:

Introduction

The work book emphasizes on the basic components of digital electronics including op-amps, analog switches, different ICs, sample-and-hold circuit, ADC and DACs. All these components are pre fabricated on experiment modules, so students do not need to assemble any thing manually. These study modules are provided with complete power supply block and different electronic components so that different circuits can be established through jumpers and connecting wires. This makes it easy to observe the circuit and more time is at its disposal for observation rather then wasting time in assembling. Apart from this students will acquire comprehensive knowledge of equipments like Digital Multimeter, Function Generator and Digital Oscilloscope.

By attaining knowledge of these equipments, components and accouterments students will be capable of designing, analyzing and observing an electronic circuit.

Digital Electronics Laboratory

CONTENTS

Lab. No.	Date	List of Experiments	Page	Remarks
1		To produce an astable multivibrator with: - Symmetrical square wave output - Non-Symmetrical square wave output	1-5	
2		To determine the frequency and output amplitude of a triangular wave generator To determine the frequency and output amplitude of a ramp generator	6-10	
3		To illustrate the operation and characteristics of the analog switches.	11-14	
4		To illustrate the switching times and switching threshold of the analog switches	15-20	
5		To illustrate the operation and characteristics of the sample and hold circuit	18-21	
6		General considerations on the Digital-to-Analog and Analog-to-Digital Conversion. And observation of its different parameters.	22-25	
7		Frequency analysis of the Digital-to-Analog and Analog-to-Digital Conversion and observation of its different	26-27	
8		Description of the module E18/EV and to illustrate the gate delay of a TTL Inverter	28-31	
9		To study the Basic Characteristics of Flip-Flops	32-37	
10		To observe the propagation and transition times of CMOS and TTL Gates	38-40	
11		To implement a) 2-bit counter circuit b) Frequency divider circuit Using JK-flip flop	41-44	
12		To implement a circuit that generates the magnitude of 2's complement number and then compare it with another number using a magnitude comparator and start a counter when certain condition true.	45-47	

Lab No. 1

PURPOSE:

To produce an astable multivibrator with:
Symmetrical square wave output
Non-symmetrical square wave output

EQUIPMENT REQUIRED:

i Base unit for the IPES system
b Experiment module MCM7/EV
D Digital multimeter
b Function generator
D Oscilloscope

Theory:

With an astable multivibrator, the op amp operates only in the non-linear region. So its output has only two voltage levels, Vmin and Vmax. The astable continually switches from one state to the other, staying in each state for a fixed length of time. The circuit of an astable multivibrator is shown in figure f 7.01 . Note that this circuit does not need an input signal. To find out the relations governing the operation of the astable, we start with the usual hypothesis that the operational amplifier has an ideal behavior. Suppose the output is in the state $\mathrm{Vo}=\mathrm{Vmax}$. When Vo takes this value the voltage V_{Al} of the non inverting input is:

$$
\mathrm{V}_{\mathrm{Al}}=\mathrm{Vmax} \cdot \mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)
$$

The capacitor C starts charging through resistor R towards the value Vmax. This charging continues until the voltage V_{B} of the inverting input reaches the value V_{Al}. At this point, as the inverting input voltage is more than the non-inverting input, the output switches low, to Vmin. The voltage $\mathrm{V}_{\mathrm{A} 2}$ is now given by:

$$
\mathrm{V}_{\mathrm{A} 2}=\mathrm{Vmin} . \mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)
$$

At this point, the capacitor C starts discharging through R towards the voltage Vmin until it reaches the value $\mathrm{V}_{\mathrm{A} 2}$, at which point the output switches to Vmax .The cycle then starts again.
We have seen that the voltage across the capacitor C can vary from $V_{A 1}$ to $V_{A 2}$, so in the period of time when the output is low, at Vmin, the voltage on the capacitor is given by:

$$
\mathrm{V}_{\mathrm{B}}(\mathrm{t})=\mathrm{Vmin}-(\mathrm{Vmin}-\mathrm{Vmax} * \mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2))^{*} \mathrm{e}^{-\mathrm{t} / \mathrm{R}^{*} \mathrm{C}}
$$

While in the period of time when the output is at Vmax, the capacitor voltage is:

$$
\mathrm{V}_{\mathrm{B}}(\mathrm{t})=\mathrm{Vmax}-(\mathrm{V} \max -\mathrm{V} \min * \mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2))^{*} \mathrm{e}^{-\mathrm{t} / \mathrm{R}^{*} \mathrm{C}}
$$

The period T1 for which the output voltage is at Vmax can be found by calculating the time the capacitor voltage takes to equal V_{Al}. So :

$$
\mathrm{Vmax} /(\mathrm{R} 1+\mathrm{R} 2)=(\mathrm{Vmin} /(\mathrm{R} 1+\mathrm{R} 2)-\mathrm{Vmax})^{*} \mathrm{e}^{-\mathrm{T} 1 / \mathrm{R}^{*} \mathrm{C}}+\mathrm{Vmax}
$$

From which:

$$
\mathrm{T} 1=\mathrm{R} * \mathrm{C} * \ln \underset{\mathrm{Vmax}-\mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2) * \mathrm{~V} \max }{\mathrm{Vmax}-\mathrm{R} 1 /(\mathrm{R} 2) * \mathrm{Vmin}}
$$

Similarly we can find the period T 2 for which the output stays at Vmin:

$$
\mathrm{T} 2=\mathrm{R} * \mathrm{C} * \ln \frac{\mathrm{Vmax}^{*} \mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)-\mathrm{Vmin}}{\mathrm{Vmax} * \mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)-\mathrm{Vmin}}
$$

Supposing that Vmin $=-$ Vmax we obtain:

$$
\mathrm{T} 1=\mathrm{T} 2=\mathrm{R} * \mathrm{C} * \ln \frac{1+\mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)}{1-\mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)}
$$

The total period T of the square-wave is given by the sum of $T 1$ and $T 2$. We can see that the square-wave period and so the frequency can be varied by varying the values of R1, R2, R and C. To obtain an asymmetrical square-wave (duty cycle not 50%) we can make the capacitor charge and discharge through resistors of different values.

Figure
F1. 1

Procedure:

- Insert jumpers J3, J16, J22, J30, J34 to produce the circuit of figure F7.02
b Calculate the output frequency with the formulae.
- Connect the first probe of the oscilloscope to the output V_{o} of the amplifier and the second probe to the inverting input V_{B}
- -Measure the frequency with the oscilloscope, and compare it with the theoretical result
i Calculate the capacitor voltages at which output switching occurs, according to the formulae
i Measure the capacitor voltages at which output switching occurs and compare the results with those calculated from theory

Figure F1.2

Figure F1.3

- Now connect jumper J27, to produce the circuit of figure F7.03
- Connect the first probe of the oscilloscope to the output of the A_{1} operational amplifier and the second to the inverting input VB
- Calculate the values of T1 and T2 as given by the formulae.
- Measure the values of T1 and T2 with the oscilloscope.

Observation(Symmetrical square wave):

S.NO.	Quantity	Observed Value	Calculated Value
1	$\mathrm{~V}_{\mathrm{B} \text { (P-P) }}$		
2	$\mathrm{~V}_{\mathrm{O}(\mathrm{P}-\mathrm{P})}$		
3	Frequency		
4	Vmax		
5	Vmin		
6	Capacitor charging time		
7	Capacitor discharging time		

Outcome:

D The approximate frequency of the oscillation of the astable multivibrator (Symmetrical square wave), when $R 1=R 2=10 \mathrm{k}$ and $\mathrm{R}=100 \mathrm{~K}, \mathrm{C}=68 \mathrm{nf}$ and Vmin $=-\mathrm{Vmax}$ comes out to be: $1 / \mathrm{T}_{1}+\mathrm{T}_{2}=$

Observation(Non svmmetrical square wave):

S.NO.	Quantity	Observed Value	Calculated Value
1	$\mathrm{~V}_{\mathrm{B} \text { (P-P) }}$		
2	$\mathrm{~V}_{\mathrm{O}(\mathrm{P}-\mathrm{P})}$		
3	Frequency		
4	Vmax		
5	Vmin		
6	Capacitor charging time		
7	Capacitor discharging time		

Outcome:

b The approximate frequency of the oscillation of the astable multivibrator (Non symmetrical square wave), when $R 1=R 2=10 \mathrm{k}$ and $\mathrm{R}=100 \mathrm{~K}, \mathrm{C}=68 \mathrm{nf}$ and Vmin $=-\mathrm{Vmax}$ comes out to be: $1 / \mathrm{T}_{1}+\mathrm{T}_{2}=$

Lab No. 2

PURPOSE:

To determine the frequency and output amplitude of a triangular wave generator To determine the frequency and output amplitude of a ramp generator

EQUIPMENT REQUIRED:

D Base unit for the IPES system

- Experiment module MCM7/EV
- Digital multimeter
- Oscilloscope

Theory:

Among the waveforms that can be generated with op amps, the most common are the triangular, the ramp and the square-wave. A triangular wave can be generated with the circuit of figure F8.01.in which two operational amplifiers are used. The first operates as a comparator, while the second as an integrator. V_{O} is the output voltage of the integrator, Vr the output voltage of the comparator. The saturation voltages Vmax and Vmin are equal in amplitude, and so can be called +Vr and -Vr respectively. Suppose the output of the comparator is +Vr . The voltage V_{O} will be a negative ramp which will continue to grow until the voltage of the non-inverting input of the comparator rises above zero. The minimum value of the output voltage V_{O}, applying the superposition principle, will be given by:

$$
0=\frac{\mathrm{Vr}^{*} * \mathrm{R} 3+\mathrm{V}_{\mathrm{o}} * \mathrm{R} 1}{\mathrm{R} 1+\mathrm{R} 3}
$$

From which we get: $\quad \mathrm{V}_{\mathrm{O}}=-\mathrm{Vr} * \mathrm{R} 3 / \mathrm{R} 1$

The same principles apply for the maximum voltage the output reaches, with the only difference that the ramp is raising and the voltage Vr is negative: defining this voltage as V_{O} ' we have:
$\mathrm{Vo}^{\prime}=\mathrm{Vr} * \mathrm{R} 3 / \mathrm{Rl}$
To calculate the time T taken to rise from V_{O} to $\mathrm{V}_{\mathrm{O}}{ }^{\prime}$ remember that the capacitor C charges with a constant current given by:

$$
\mathrm{I}=\mathrm{Vr} /(\mathrm{P}+\mathrm{R} 2)
$$

So, from:

$$
\mathrm{I}=-\mathrm{C} * \mathrm{dVo} / \mathrm{dt}
$$

We find that:

$$
\frac{\mathrm{Vr}}{\mathrm{P}+\mathrm{R} 2}=\frac{-\mathrm{C}^{*}\left(\mathrm{Vo}^{\prime}-\mathrm{Vo}\right)}{\mathrm{T}}
$$

From which:

$$
\mathrm{Voo}^{\prime}-\mathrm{Vo}=-\frac{\mathrm{Vr}^{*} \mathrm{~T}}{\mathrm{C}^{*}(\mathrm{P}+\mathrm{R} 2)}
$$

As:

$$
\mathrm{Vo}^{\prime}-\mathrm{Vo}=2 * \mathrm{Vr} * \mathrm{R} 3 / \mathrm{Rl}
$$

we have:

$$
\mathrm{T}=2 * \mathrm{R} 3 *(\mathrm{P}+\mathrm{R} 2) * \mathrm{C} / \mathrm{Rl}
$$

The time T is equal to half period, so the output frequency F will be the inverse of twice T:

$$
\mathrm{F}=\mathrm{R} 1 /[4 * \mathrm{R} 3 *(\mathrm{R} 2+\mathrm{P}) * \mathrm{C}]
$$

Triangular wave

To convert the triangular wave generator to a ramp generator (also known as a saw-tooth) simply insert a diode and resistor in parallel with the potentiometer P and resistor R2. The diagram is shown in figure F2.2

Figure F2.2

Just as with the triangular wave generator, the positive ramp is generated by the current flowing through P and R2 (the diode D is reverse biased), while for the negative ramp the capacitor discharges through a smaller resistance (given by R5 in parallel with the series of P and R2) and so it is faster.
So the time T 1 to go from $-\mathrm{Vr} * \mathrm{R} 3 / \mathrm{Rl}$ to $+\mathrm{Vr} * \mathrm{R} 3 / \mathrm{Rl}$ is the same as a triangular wave generator, while the time T 2 of the return to $-\mathrm{Vr}^{*} \mathrm{R} 3 / \mathrm{R} 1$ is given by:

$$
\begin{aligned}
& \mathrm{T} 2=\frac{2 * \mathrm{R} 3 * \mathrm{R}_{P}{ }^{*} \mathrm{C}}{\mathrm{R} 1} \\
& \mathrm{R}_{\mathrm{P}}=(\mathrm{P}+\mathrm{R} 2) / / \mathrm{R} 5
\end{aligned}
$$

Where:
As in module MCM7 the resistance R 5 is much less than the value of P and $\mathrm{R} 2, \mathrm{R}_{\mathrm{P}}$ can be considered equal to R5. With this approximation:

$$
\mathrm{T} 2=\frac{2 * \mathrm{R} 3 * \mathrm{R} 5 * \mathrm{C}}{\mathrm{RI}}
$$

With the values used in the module, and with the potentiometer all inserted, $\mathrm{T} 2=4.4$ $\mu \mathrm{sec}$ which can be neglected in comparison with T 1 which is about few milliseconds. The frequency of the ramp generator is equal to:

$$
\mathrm{F}=\mathrm{R} 1 /[2 * \mathrm{R} 3 *(\mathrm{R} 2+\mathrm{P}) * \mathrm{C}]
$$

To obtain a square wave generator, take the signal from the output of the first op amp, and if the charge and discharge times of the integrator are equal, the output voltage will be symmetrical.

Procedure:

Triangular waveform generator

- Insert jumpers J3, J13, J33, J34, J37, J39, J44, J53, J55 to the circuit of figure F2. 3
- Adjust RV6 completely CCW to obtain zero resistance and the output voltage value of the comparator (terminal 3) using oscilloscope.
- Adjust the trimmer RV6 to half value.
- Calculate the amplitude of the output voltage (terminal 5).
- Measure the amplitude of the output voltage with the oscilloscope.

D Calculate the output voltage frequency according to the formulae.

- Measure the output frequency with the oscilloscope.
- Check the presence of a square wave at the output of the comparator (terminal 3).

Figure F2.3

Ramp generator:

i From previous circuit insert J36 to produce the circuit of figure F8.04.

- Adjust RV6 completely CCW to obtain zero resistance.

D Measure the amplitude of the output voltage with the oscilloscope

- Calculate the output frequency using formulae
i Measure the output frequency with the oscilloscope
- Measure the charge and discharge times of the capacitor

Figure F2.4

Observation:

S.NO.	Quantity	Observed Value	Calculated value
1	Vo(triangular)		
2	Frequency (triangular)		
3	V $_{\mathrm{O}}$ (Ramp)		
4	Frequency (Ramp)		

Outcome:

Triangular:

v The approximate frequency of the oscillation of the astable multivibrator comes out to be: \qquad -

- The output voltage of the oscillation of the astable multivibrator comes out to be:
\qquad .

Ramp:

i The approximate frequency of the oscillation of the astable multivibrator comes out to be: \qquad .

- The output voltage of the oscillation of the astable multivibrator comes out to be:
\qquad .

Lab No. 3

PURPOSE:

To illustrate the operation and characteristics of the analog switches.

EQUIPMENT REQUIRED:

i Base unit for the IPES system
D Experiment module G33/EV

- Digital multimeter

Basic theory:

CMOS Switches

MOSFETs are easily integrated into driver circuits on a single chip, and are therefore suitable for use as analog signal switches. The main disadvantage in switches featuring PMOS and NMOS transistors is there sensitivity to ON resistance at the analog signal voltage.
This problem can almost entirely eliminated by the use of CMOS switch consists of two parallel switches one featuring a channel-p MOSFET, the other with a channel-n MOSFET this parallel combination gives a relatively flat ON resistance/ analog signal voltage curve .

DESCRIPTION OF THE MODULE

ANALOG SWITCH

The section of the circuit denominated" ANALOG SWITCH" consists of the integrated analog switch ICs (DG 200 CJ).
The data sheet shows that this is a two-channel single-pole single-throw (SPST) analog switch which employs CMOS technology to ensure low and nearly constant ON resistance over the entire analog signal range. The switch will conduct current in both directions with no offset voltage in the ON condition and block voltages up to $30 \mathrm{Vp}-\mathrm{p}$ in the OFF condition. The ON-OFF state of each switch is controlled by a driver. With logic " 0 " at the input to the driver, the switch will be ON; logic " 1 " will turn the switch OFF. A voltage of between 0 and 0.8 V is required for logic " 0 ", while logic " 1 " is given by a voltage of between 2.4 and 15 V . The input can therefore be directly interfaced with TTL, DTL, RTL and CMOS circuits.
The switch action is break-before-make, in order to prevent any shorting in the input signal. For the sake of convenience in the execution of the exercises, and as the switch is bidirectional, the two terminals of the analog switch are indicated on the trainer panel as SWITCH IN and SWITCH OUT. The driver logic input may be manual (ON/OFF operation via special switch) or external. This is selected by fitting a jumper between jack 12 and jack 14.

Figure F3.1

Procedure:

Measuring $\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$ without current

Purpose of the exercise

The purpose of this exercise is to measure the drain-source resistance present in the analog switch without current.
Procedure
Connect the $\pm 12 \mathrm{~V}$ and ground jacks on the panel to a corrected power supply.

Connect jack 12 to jack 14.

Connect the digital multimeter (set to measure ohms) between jacks 9 and 10. Set switch I_{1} to ON ; read the value of $\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$ indicated on the digital multimeter.

Measuring $\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$ with current

Purpose of the exercise

The purpose of this exercise is to measure the drain-source resistance present in the analog switch in the ON state as the current increases.

Procedure

Connect the $\pm 12 \mathrm{~V}$ and ground jacks on the panel to a corrected power supply. Connect jacks 12 and 14.
Connect a variable $0=>+12 \mathrm{~V}$ DC power supply between jack 9 and ground.
Set switch I_{1} to ON .
Increase the input voltage gradually until voltage can be measured at the terminals of R_{26}, as shown in column 1 of table 9.1. For each R_{26} voltage, measure the voltage between jacks 9 and 10 and list these voltages in column
Care should be taken to avoid exceeding 12 V , as this might damage the unit.
Given R_{26} equivalent to $1.2 \mathrm{~K} \Omega$.
Calculate the current circulating between drain and source.
From $V_{D S}$ and $I_{D S}$, calculate the value of $R_{D S}$ and list in column 4.
Plot the drain source current values ($\mathrm{I}_{\mathrm{DS}}-\mathrm{mA}$) on the x -axis and the drain source resistance values ($\mathrm{R}_{\mathrm{Ds}}-\boldsymbol{\Omega}$) on the y -axis.

Table 3.1.

S.N.	$\mathrm{V}_{\mathrm{R} 26}(\mathrm{volts})$	$\mathrm{I}_{\mathrm{DS}(\mathrm{mA})}$	$\mathrm{V}_{\mathrm{DS}(\mathrm{mV})}$	$\mathrm{R}_{\mathrm{DS}(\Omega)}$
1				
2				
3				
4				
5				
6				

Outcome:

The $\mathrm{R}_{\mathrm{DS}}(\mathrm{ON})$ without current comes out to be:
The $\mathrm{R}_{\mathrm{DS}}(\mathrm{ON})$ with current 2 mA comes out to be: \qquad

Lab No. 4

PURPOSE:

To illustrate the switching times and switching threshold of the analog switches.

EQUIPMENT REQUIRED:

i Base unit for the IPES system
D Experiment module G33/EV

- Digital multimeter
- Function generator
- Oscilloscope

Basic theory:

One of the main specifications regarding the application of analog switches is the TURN ON TIME and the TURN OFF TIME. When a switch is commanded to change from ON to OFF, and vice-versa, a propagation delay occurs in the circuit driver. The T_{ON} and $\mathrm{T}_{\text {OFF }}$ times may be used to determine when a switch begins operation and whether multiple switches connected in a multiplexer configuration will be "make-before-break" or "break-before-make", i.e. whether the switches are triggered and then pause, or whether the pause precedes their action. The propagation delay should not be confused with the settling time, which is also effected by the load impedance. Two transitions will therefore apply:

OFF to ON $t_{\text {settling }}=t_{\text {ON }}+t_{1} \uparrow$ where $t_{1} \uparrow=f\left(R_{\text {ON }}, R_{\text {LOAD }}, C_{D}, C_{\text {LOAD }}\right)$
ON to OFF $\mathrm{t}_{\text {settling }}=\mathrm{t}_{\mathrm{OFF}}+\mathrm{t}_{1} \downarrow$ where $\mathrm{t}_{1} \downarrow .=\mathrm{f}\left(\mathrm{R}_{\text {LOAD }}, \mathrm{C}_{\text {LOAD }}, \mathrm{C}_{\mathrm{D}}\right)$
Figure F4.1

Measurement of the switching time

Purpose of the exercise

The purpose of this exercise is to determine the time required by the analog switch to open and close.

Procedure

Connect the $\pm 12 \mathrm{~V}$ and ground jacks on the panel to a corrected power supply.
Connect $\mathrm{a}+10 \mathrm{~V}$ DC power supply between jack 9 and ground.
Send a rectangular signal from the function generator between jack 12 and ground (amplitude 5 V positive, frequency 50 KHz).
Connect one of the probes of the oscilloscope to the generator signal and the other to the output signal present between jack 10 and ground.
Measure the switching times between the output signal and the control signal; i.e. the rise time which corresponds to the closing of the analog switch and the fall time which corresponds to its opening.

Figure F.4.2

Measurement of the switching threshold

Purpose of the exercise

The purpose of this exercise is to measure the voltages at which the analog switch opens and closes.

Procedure

Connect the $\pm 12 \mathrm{~V}$ and ground jacks on the panel to a corrected power supply.
Connect a +5 V DC power supply between jack 9 and ground.
Send a triangular signal from the function generator between the 12 jack and ground (amplitude 5 V positive, frequency 1 KHz).
Connect one of the probes of the oscilloscope to the generator signal and the other to the output signal present between jack 10 and ground.
Measure the switching threshold by comparing the output signal with the control signal, i.e. the amplitude of the control signal at which the analog switch opens $\left(\mathrm{V}_{1}\right)$ and the amplitude at which it closes $\left(\mathrm{V}_{2}\right)$.

Figure 6.01 shows measurements carried out on a sample switch.

Outcome:

The t_{ON} (Turn ON time) of the analog switch comes out to be:
The $\mathrm{t}_{\mathrm{OFF}}$ (Turn OFF time) of the analog switch comes out to be:
\qquad The voltages at which the analog switch opens comes out to be: \qquad
The voltages at which the analog switch closes comes out to be: \qquad

Lab No. 5

PURPOSE:

To illustrate the operation and characteristics of the sample and hold circuit

EQUIPMENT REQUIRED:

Base unit for the IPES system
Experiment module G33/EV
Function generator
Oscilloscope

Theory:

Introduction

The most simple sample and hold circuit consists of a switch and a capacitance. Two important specifications may be easily illustrated using the basic circuit. These are the aperture time and the acquisition time. The aperture time is the delay (reaction time) between the moment in which the control logic instructs the switch to open and the moment in which the aperture actually occurs. When extremely long aperture times (in the order of milliseconds) are tolerated, a relay may be used for the switch. For aperture times of less than $100 \mu \mathrm{~s}$, FETs or BJTs are used as switches.
In variable-time systems, the input signal to the sample and hold circuit changes; the sample and hold circuit holds the last signal measured. The acquisition time is the time required by the sample and hold circuit to acquire the input signal value (within a predetermined degree of accuracy) when the control logic passes from hold to sample. Clearly, the most onerous condition is that in which the output must alter over its entire range (e.g. from +10 V to -10 V and vice-versa).

Module Description

Sample and hold device featuring operational amplifiers and analog switches
This circuit represents a non-inverting sample and hold with four operational amplifiers and four analog switches.
Operational amplifiers IC_{8} and IC_{10}, together with analog switches $\mathrm{IC}_{9} \mathrm{a}$ and $\mathrm{IC}_{9} \mathrm{c}$, make up the classic sample and hold circuit.
As the two analog switches must operate in opposing modes:
$\begin{array}{lll}\text { HOLD phase: } & \text { IC9 }=\text { closed } & \text { IC9c }=\text { open } \\ \text { SAMPLE phase: } & \text { IC9a }=\text { open } & \text { IC9c }=\text { close }\end{array}$
And as there is only one command, switch IC9b is used to carry out an inversion.
Capacitor C_{9} is the HOLD capacitor, and is also referred to as the "data storage capacitor".
Input amplifier IC_{8}, configured as non-inverting, has a high input resistance and features a potentiometer for calibration of the offset voltage.
Operational IC_{10} is of the FET type, and therefore has a very high input resistance (being connected in a non-inverting configuration). This means that the discharge of capacitor C_{9} in the HOLD phase is minimal.
The circuit consisting of $\mathrm{IC}_{9 \mathrm{~d}}$ and IC_{11} is added in order to minimize the errors introduced by analog switch $\mathrm{IC}_{9 \mathrm{c}}$ and operational amplifier IC_{10}. The errors introduced by these two parts of the circuit are identical (also considering that R_{42} corresponds approximately to the output resistance of operational amplifier IC_{8}) and are therefore cancelled when applied to the two differential inputs of amplifier IC_{12} It is important that capacitors IC_{9} and IC_{10} are almost identical.
By connecting jack 17 to jack 19, the SAMPLE/HOLD status may be controlled via the SAMPLE/HOLD switch. If jack 17 is connected to jack 18, the SAMPLFJHOLD status is controlled by the signal from the GENERATOR.

Figure F 5.02

Figure F 5.03

Procedure:

Measuring the acquisition time

Purpose of the exercise

The purpose of this exercise is to measure the time required for transformation of the input signal into an output signal (starting from the beginning of the sampling phase).

Procedure

Connect the $\pm 12 \mathrm{~V}$ and ground jacks of the panel to a corrected power supply.
Connect jack 17 to jack 18.
Connect jack 7 to jack 5 .
Set switch I_{2} to 10 KHz .
Adjust the duty-cycle of the potentiometer so that the sample time is $60 \mu \mathrm{sec}$ and the hold time $10 \mu \mathrm{sec}$ (turn the knob completely counterclockwise).
Connect jack 3 to jack 15.
Connect one of the probes of the oscilloscope to the output signal between jack 22 and ground. The second probe should be connected first to the sample and hold signal and then to the input signal.
Fig. F5.4 shows the behavior in time of the three signals.
Note the existence of a delay (acquisition time) is approximately 10 to $15 \mu \mathrm{sec}$ between the "start sampling" command signal and the settling of the output signal.

Figure F5.4

Vary the duty cycle of controlling signal (connected to jack 17), and take observations.
Vary the duty cycle and take observations.
Connect the jack 15 and ground to function generator (sine wave of 5 V positive with 5 KHz).
Vary the duty cycle of controlling signal (connected to jack 17).
Observe the acquisition times for different duty cycles of sample and hold signal.
Repeat the procedure with triangular wave input

Outcome:

The time required for transformation of the square wave input signal into an output signal comes out to be as follows:

Aperture Times:

Rise Time $=$
Fall Time =

Acquisition Times:

Rise Time $=$ Fall Time $=$

Lab No. 6

PURPOSE:

General considerations on the Digital-to-Analog and Analog-to-Digital Conversion. And observation of its different parameters.

EQUIPMENT REQUIRED:

- Base unit for the IPES system
- Experiment module F03A
- Digital multimeter.

Basic theory:

An analog-to-digital (A/D) conversion means quantizing the amplitude of a physical quantity (e.g. a voltage) into a discrete levels class. Thus obtaining a series of digits, forming a number of a proper code. Generally the binary code and, consequently, binary numbers are used. Analog data can be obtained again through digital-to-analog (D/A) conversion.
Due to the quantization, each value V of the analog signal included within the interval V_{i} to $\mathrm{V}_{\mathrm{i}+1}$ is always quantized at the same level N_{i}.
The interval: $\mathrm{V}_{\mathrm{i}+1}$ to $\mathrm{V}_{1}=\mathrm{Q}$, is defined as "quantum level".
Another important parameter of A / D converters is the conversion time since it defines the capacity of the converter to operate the conversion of a variable signal; in fact, remember that the sequence of the quantized levels must allow the regeneration of the original analog signal.
A time-variable signal can be converted into a discrete values class carrying out the sampling and holding operations. The sampling and holding operations are carried out through proper circuits called "Sample and Hold".

Resolution

It defines the smallest standard incremental change in. the output voltage of a DAC or the amount of input voltage change required to increment the output of an
ADC between a code change and the next adjacent code change. A converter with " n " switches can divide the input in 2^{n} parts: the least significant increment is then 2^{-n}, or one least significant bit (LSB). On the contrary the Most Significant Bit carries a weight of 21. Resolution is applied to DACs and ADCs and may be expressed in percent of full scale or in binary bits.

Quantization error

The "ideal" quantization error obtained from the ideal characteristic of the A/D converter. It is the maximum deviation of a straight line of a perfect ADC, from a transfer function. As, by its very nature, an ADC quantizes the analog input into a finite number of output codes, only an infinite resolution would exhibit zero quantizing error. The quantizing error cannot strictly be applied to a DAC; in fact, the equivalent effect is more precisely a resolution error.

DESCRIPTION OF THE MODULE F03A

This module carries out an educational system of analog-to-digital and digital-to-analog conversion. This system consists of two 8-bit converters of large diffusion. A signal adapter is inserted before the A / D converter. This device permits the conversion of signals coming from conditioners with output range not coinciding with the converter output. The input range is chosen by acting on the IN/OUT selector and can be from 0 to
+8 V with the selector down and from -8 to +8 V with the selector up. The input of the digital-to-analog converter can come from the analog-to-digital converter, from the computer or from a series of switches installed on the panel. The input connection is chosen through the pushbutton (D/A INPUT SELECTOR) and displayed on the LEDS of the multiplexer. The equipment must be power supplied with regulated D.C. voltages of $+12,-12 \mathrm{~V}$ and +5 V .

Figure F6.01

A/D converter

The A/D converter (ADCO804LCN) operates with an input range included from 0 V to +5 V , that is, an input voltage of 0 V generates a digital output signal consisting of a sequence of all 0 s , whereas an input voltage of +5 volts generates a digital signal of all
1 s . Therefore the input signal must be adapted so that the minimum value of its range can generate an output signal of all 0 and the maximum value of the range generates a digital signal of all 1 .

D/A Converter

The digital signal (8 bits) which must be sent to the input of the D / A converter (DACO800) can come from the A/D converter, from the computer or from a set of the 8 switches.
The operational amplifier $\mathrm{IC}_{1 \mathrm{~A}}$ has a gain of 0.5 and carries out a shift range of the input signal if the range -8 to +8 is selected, the operational amplifier $\mathrm{IC}_{1 \mathrm{~B}}$ makes the extreme range values coincide with 0 v and 5 v .

Range:

The range of module can be selected through Range IN/OUT switch. The range can be 0 v to +8 v , i.e.

$$
\begin{gathered}
\mathrm{OV}=00000000 \\
+8 \mathrm{~V}=11111111
\end{gathered}
$$

or -8 v to +8 v , i.e.

$$
\begin{aligned}
& -8 \mathrm{~V}=00000000 \\
& +8 \mathrm{~V}=11111111
\end{aligned}
$$

Procedure:

Set switch Range IN/OUT to 0 V to 8 V .
Resolution measurement:

- Connect the $\pm 12 \mathrm{~V},+5 \mathrm{~V}$ and ground jacks of the panel to a corrected power supply.
- Select SWITCH option through D/A input selector.
- Set the switches $\left(\mathrm{S}_{128}\right.$ to $\left.\mathrm{S}_{1}\right)$ to any position and note the analog voltage output through multimeter.
- Change the position of switch S_{1} (LSB), and note the analog voltage output through multimeter.
- The change in voltages is equal to one resolution.

Binary codes for different voltage levels:

- Taking resolution as voltage required for LSB change, assign the binary codes to different voltage levels, starting as

$$
\begin{gathered}
\mathrm{OV}=00000000 \\
+8 \mathrm{~V}=11111111
\end{gathered}
$$

- Check the assigned values to the values, observed through LEDs output.

Quantization error:

- Apply some voltage to ADC input.
- Increase the input voltage to maximum value so that the output of ADC does not change.
- Apply maximum change in input voltage for which output shows same value as previous. The change is Quantization error, normally equal to half of the resolution.

Now set the switch Range IN/OUT to -8 V to +8 V , and repeat the procedure.

Observation:

Input Voltage	Binary Code(0 V to +8 v)	Output voltage		
		Output voltage		
Voltage				Binary Code(-8 v to
:---:				
+8 v)	\quad			
:---				

Outcome:

- The resolution of the ADC and DAC , for the switch Range IN/OUT position 0 V to 8 V , is.
- The quantization error of the ADC and DAC, for the switch Range IN/OUT position 0 V to 8 V , is....
- The resolution of the ADC and DAC, for the switch Range IN/OUT position -8 V to +8 V , is....
- The quantization error of the ADC and DAC, for the switch Range IN/OUT position -8 V to +8 V , is....

Lab No. 7

PURPOSE:

Frequency analysis of the Digital-to-Analog and Analog-to-Digital Conversion, and observation of its different parameters:

EQUIPMENT REQUIRED:

- Base unit for the IPES system
- Experiment module F03A
- Digital multimeter.
- Function generator
- Oscilloscope

Basic theory:

A time-variable signal can be converted into a discrete values class carrying out the following operations:
Sampling operations: This is conversion of continuous time into discrete time, through which the instantaneous values of the analog signal are separated. The frequency of the sampling signal must guarantee the complete regeneration of the original signal. At this point, consider the sampling theorem stating that, if B is the bandwidth of the analog signal, the minimum sampling frequency must be equal to 2 B .
Therefore $\quad \mathrm{F} \geq 2 \mathrm{~B}$
Sampling frequency: Analog signal is sampled at sampling frequency. The relation between analog and digital frequencies is:
Digital frequency $=$ analog frequency $/$ sampling frequency

$$
f=\mathrm{F} / \mathrm{Fs}
$$

Periodic sampling of continuous-time signal implies a mapping of the infinite frequency range for the variable F (or Ω) into a finite frequency range for the variable $f($ or ω). Since the highest frequency in a discrete time signal is $\omega=\pi$ or $f=1 / 2$, it follows that, with a sampling rate F_{s}, the corresponding highest values of F and Ω are

$$
\begin{aligned}
& \mathrm{Fmax}=\mathrm{Fs} / 2=1 / 2 \mathrm{~T} \\
& \Omega \max =\pi * \mathrm{Fs}=\pi / \mathrm{T}
\end{aligned}
$$

Quantization operation: This is conversion of discrete time continuous valued into a discrete time discrete valued (digital) signal. it holds a constant value during the whole conversion time of the A/D converter. Actually the sampled value is held until the next sampling.
Coding: In the coding process, each discrete value is represented by a binary sequence.

Procedure:

- Connect the $\pm 12 \mathrm{~V},+5 \mathrm{~V}$ and ground jacks of the panel to a corrected power supply.
- Select A / D option through D / A input selector.
- Apply different voltage values to the analog input.
- Read the corresponding binary values on LEDs.
- Note the analog output values of the D/A converter corresponding to the different digital values and compare with the analog input value.

Response to a square, triangular, sine wave:

Set the selector of IN/OUT RANGE to "-8 to +8 V ".

- Select A / D option through D / A input selector.
- Apply a sine wave with frequency of 1 kHz and amplitude not exceeding, $\pm 8 \mathrm{~V}$, to the input.
- Display the signal after the double conversion on oscilloscope.
- Compare its wave shape, amplitude, and phase shift with those of the input signal.
- Repeat the test with a triangular wave and with a square one.

Frequency response:

- Repeat the last test and increase the frequency of the input signal.
- Note the frequency up to which the signal reconstruction is correct.

Set the selector of IN/OUT RANGE to " 0 to +8 V ".
Check the response to a sine, triangular, and square wave, with different frequencies.

Outcome:

The maximum frequency of the sine wave input up to which output can be reconstructed comes out to be: \qquad .
The most effected wave type by increasing frequency is: \qquad .
The least effected wave type by increasing frequency is: \qquad .

Lab No. 8

PURPOSE:

Description of the module E18/EV and to illustrate the gate delay of a TTL Inverter:

EQUIPMENT REQUIRED:

i Base unit for the IPES system

- Experiment module E18/EV
- Digital multimeter
- Function generator
- Oscilloscope

Basic theory:

DESCRIPTION OF THE MODULE

The educational module E18 consists in a printed circuit on which digital logic circuits (TTL and CMOS) are mounted performing the following functions:

NO. of circuits	Name of circuit	IC

-6 Inverters 74LS04
-4 2- input AND ports 74LS08
-4 2-input NAND ports 74LSOO

- 2-iput OR ports74LS32
-4 2-input NOR ports 74LS02
-4 2-input EX-OR ports 74LS86
-2 TTL-CMOS and CMOS-TTL interfaces MM74C906
-4 J-K Flip-Flops 74LS76
-1 4-bit full Adder 74LS83
-1 4-bit Shift-register 74LS95
-1 Synchronous BCD counter 74LS160
-1 BCD decoder and display driver 74LS247
-1 7-segment display HDSP5301
-1 Sync up/down counter 74LS192
-1 9-bit parity generator 74LS280
-1 Monostable 74LS221
-1 Multiplexer 74LS153
-1 Demultiplexer 74LS155
-1 BCD to decimal decoder 74LS42

-1	Encoder	74LS147
-1	Three state buffer	74LS125
-1	Latch	74LS75
-1	4-bit comparator	74LS85
-1	4-bit preselector	PICO-D-137-AK-1
-1	Clock generator $(1 \mathrm{~Hz}, 10 \mathrm{kHz})$	74LS14
-2	Push- buttons	4/6417
-8	Switches	4/7201
-10	LEDs	TIL210
-4	NAND ports with two CMOS inputs	CD4011
-2	20-pin terminals	

The components are mounted to carry out the experiments more quickly especially more complex circuits.
The connections between terminals of the devices are carried out by means of electrical cables and proper tubes present on the module and, electrically connected to the terminals of the integrated circuits. Each integrated circuit shows the silk screen printed logical diagram. The functions related to the IC are shown and terminals (In-Out) are indicated.

Implementation of the full-adder circuit, using the module E18/EV:

Full- Adder

A full-adder is a combinational circuit that forms the arithmetic sum of three input bits. It consists of three inputs and two outputs. Two of the input variables, denoted by x and y, represent two significant bits to be added. The third input z, represents the carry from the previous lower significant position. Two outputs are necessary because the arithmetic sum of three binary digits ranges in value from 0 to 3 and binary 2 or 3 needs two digits. The binary variable S indicates the sum and C the carry. The binary variable S gives the value if the least significant bit of the sum. The binary variable C gives the output carry.

Procedure:

- Connect the $\pm 12 \mathrm{~V}$ and ground jacks on the panel to a corrected power supply.

5 Make connections as shown in fig.8.1.
b The connections between terminals of the devices should be carried out by electrical cables and proper tubes present on the module.

- Supply the required power (5 V) to ICs AND OR and XOR.
- Connect the inputs x, y, and z to switches $\left(\mathrm{SW}_{\mathrm{O}}\right.$ to $\left.\mathrm{SW}_{7}\right)$.
- Connect the output C and S to LEDs $\left(\mathrm{LD}_{\mathrm{O}}\right.$ to $\left.\mathrm{LD}_{9}\right)$.
i Check different logics by changing switch position.

Fig.8.1

Measurement of gate delay of a TTL inverter:
Gate delay: Gate delay is the time taken by an IC to respond the change in input.

Procedure

Connect the $+12 \mathrm{~V},+5 \mathrm{~V}$ and ground jacks on the module to a corrected power supply.
Connect +5 V and ground of the HEX INVERTER to a corrected power supply.
Send a rectangular signal from the function generator to input of HEX INVERTER (amplitude 5 V positive, frequency 50 KHz).
Connect one of the probes of the oscilloscope to the generator signal and the other to the corresponding output signal of the HEX INVERTER.
Measure the gate delay between the output signal and the input signal.
Figure F.8. 2

Outcome:

The gate delay of a TTL Inverter comes out to be:
The resulting truth table of the adder circuit is as follows:

x	y	z	C	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Lab No. 9

PURPOSE:

To study the Basic Characteristics of Flip-Flops

EQUIPMENT REQUIRED:

- Base unit for the IPES system
- Experiment module E18/EV

Theory:

Introduction

The bistable multivibrator, commonly called flip- flops, are the most common form of digital memory elements. A memory element is generally a device which can store the logic state 0 or 1 , called information 'bit". The memory elements enable the storing of digital information for further uses. They permit to carry out complex sequential digital circuits, which took to the construction of modern calculators.

R-S Flip-flop (latch)

A main memory circuit can be carried out with the crossed coupling of two NAND ports: this kind of connection is called R-S flip-flop. Fig. 9.1 a) shows the diagram carried out with NAND ports, while fig. 9.1 b) shows the symbol.
Similarly, to carry out the same flip- flop, it is also possible to use some NOR ports.

TRUTH TABLE OF THE
R-S FLIP FLOP
$\mathrm{X}=$ Last state
?= indefinite state

S	R	Q	Q^{\prime}
0	0	X	X
0	1	0	1
1	0	1	0
1	1	$?$	$?$

a)

Fig. 9.1

Suppose a data is to be inserted in the flip-flop; the input levels are: SET $=1$ and RESET $=\mathrm{O}$. The output level of the port 1 is low (0) and this determines a high state across the output of port $3(\mathrm{Q}=1)$. The output of port 2 is instead at 1 , so port 4 finds two high levels (port 2 and 3) across its inputs, and takes its output to a low level $(\mathrm{Q}=0)$.
The flip-flop is now on SET, with memorized information. Now, applying a high level across the RESET terminal, keeping the SET to a low level ($\mathrm{s}=0$ and $\mathrm{R}=1$), the flip- flop switches, i.e. it changes state, and the output becomes $\mathrm{Q}=0$ and $\mathrm{Q}=1$. In this case we say that the flip-flop is in RESET state. If the inputs SET and RESET are simultaneously applied to a high logic level $(\mathrm{S}=\mathrm{R}=1)$, you obtain an indeterminate state:

$$
\mathrm{Q}^{\prime}=\mathrm{Q}^{\prime}=1
$$

When the still state $(\mathrm{R}=\mathrm{S}=\mathrm{O})$ is reset, the output having the lower transition time is taken high.

R-S Flip-flop with Clock

In sequential systems, the change of state in the flip-flops is often required to occur in synchronism with the clock pulse. This is carried out by modifying the diagram of fig.9.1 into the one of fig. 9.2.

Fig. 9.2

:

While no input pulse is applied, the flip-flop keeps as it is, independently from the value of Rand S. Applying a clock pulse, if the inputs are $\mathrm{R}=\mathrm{S}=\mathrm{O}$, the flip-flop keeps stable with the last output $(\mathrm{Qn}+1=\mathrm{Qn})$. If instead we have: $\mathrm{R}=0$ and $\mathrm{S}=1$ the output of port 1 goes to 0 enabling the switching. In correspondence to a new clock pulse, if: $R=1$ and $\mathrm{S}=\mathrm{O}$, the latch changes state again and its outputs are: $\mathrm{Q}=\mathrm{O}$ and $\mathrm{Q}=1$.
In the case in which: $\mathrm{R}=\mathrm{S}=1$ on arrival of the clock pulse, the outputs of the flip- flops should both go to 1 .

J-K flip-flop

The J-K flip- flop is formed by the R-S with clock, in which the outputs are taken back to the input, as in fig. 9.3

Fig. 9.3

Suppose that the flip-flop is in the state: $\mathrm{Q}=0 ; \mathrm{Q}^{\prime}=1$. If the data input J is at the level 1 in correspondence to the clock pulse, the output of port 1 gets to 0 , and the memory cell composed by ports $3-4$ changes state: $\mathrm{Q}=1$ and $\mathrm{Q}^{\prime}=0$
This flip-flop enables the removal of the uncertainty there was in the flip-flops R-S with clock, when the inputs were both at level 1 . In fact, if:

$$
\mathrm{Q}=1 \quad \mathrm{Q}^{\prime}=\mathrm{O} \quad \mathrm{~J}=\mathrm{K}=1
$$

on arrival of the clock pulse, only port 2 enables the passage of the input data, while port 1 blocks them. The level 0 obtained across the output of port 2 makes the memory element switch (port 3 and 4). So, we ha ve seen that when the inputs are both high there is no uncertainty, but the output state changes.

J-K Master-Slave Flip-flop

In the J-K flip-flops there can be possibility of uncertainty, if the clock pulse duration is too long in respect to the propagation times.
Considering that the flip-flop is in the following conditions:

$$
\mathrm{Q}=\mathrm{O} \quad \mathrm{Q}^{\prime}=1 \quad \mathrm{~J}=\mathrm{K}=1
$$

When the clock pulse is applied, after the propagation time " t " of the ports, the output becomes:

$$
\mathrm{Q}=1 \text { and } \mathrm{Q}^{\prime}=0
$$

But being all the inputs signals still active, the outputs would tend to oscillate between 0 and 1 , and at the end of the pulse, the state of the flip- flop is uncertain. To solve this inconvenience, the flip-flop type J-K Master-Slave has been introduced, which is commonly called J-K and can be seen in fig. 9.4.

It consists in a cascade connection of two R-S flip-flops, with reaction from the output of the second one, called SLAVE, to the input of the first, and called MASTER. Some pulses inverted in respect to the ones applied to the Master are applied across the input of the Slave. If the PRESET and CLEAR inputs are not active $(\mathrm{Pr}=\mathrm{Cr}=1)$, on arrival of the clock pulse, the Master can change logic state according to the following truth table:

$$
\mathrm{Pr}=\mathrm{Cr}=1
$$

t_{n}		$\mathrm{t}_{\mathrm{n}+1}$
J	K	$\mathrm{Q}_{\mathrm{n}+1}$
0	0	Q_{n}
0	1	0
1	0	1
1	1	Q_{n}

As, during the period in which the clock pulse is high, the Slave keeps blocked, the outputs Q and $\mathrm{Q}^{`}$ are not changed. When the clock passes from 1 to 0 , the Slave switches, and the Master blocks. In other words, the data present across J and K are transferred first to the Master, during the positive part of the clock pulse, and then to the Slave, during the negative part: in this way, the uncertainties across the outputs are removed.

D Flip-flop

If a J-K flip-flop is modified by adding an inverter (as shown in fig. 9.5 a), so that the input K is complement of J , the set is known as flip-flop type D , in which $\mathrm{D}=\mathrm{DATA}$ (fig. 9.5 b). Its operation is simple: when a clock pulse arrives, the data present across the input is transferred and kept across the output.

Fig. 9.5

T Flip-flop

If the inputs J and K are set always at logic level 1 on a flip-flop J-K, so this is a flip-flop commonly called type T (T means TOGGLE).It inverts the state of the outputs each time the input pulse applied to line T passes from the state 1 to the state O. Fig. 9.6 shows the diagram (a) and the logic symbol (b) of a flip-flop type T.

Fig. 9.5

Procedure:

Analysis of an R-S Flip-flop

Procedure
\& Carry out a flip- flop type R-S using NAND and NOT ports, as in fig.9.1
$\&$ Connect the SET and RESET inputs to two switches.
Connect the outputs Q and Q to two LEDs.
$\&$ Power the module.
${ }_{2}$ 2s Turn the SET input, with the switch, to 1 and then to 0 .
\& Analyze the behavior of the outputs.
${ }_{2}$ Set the RESET line to 1 , and then to 0 .
2 Analyze the behavior of the outputs again.
\& Repeat some times the operations with the switches and check the carried out memorizations.
\& Now, try to set both inputs to 1 and explain what the reason of the uncertain state is.

S	R	Q	Q^{\prime}
0	0		
0	1		
1	0		
1	1		

Construction and Analysis of a J-K Flip-flop

Procedure

2 Carry out the circuit of a J-K flip- flop as in fig. 9.3.
2 Connect the inputs J and K to two switches, and the outputs to two LEDs.
${ }_{2}$ es Connect the terminal of the clock at the bottom on the left to the input CK of the built up flip-flop, as well as to a led, to display the behavior.
\& Power the module.
\& Set the switches connected to the inputs alternatively high. :
e Analyze the behavior of the LEDs.
\& Now, set both switches to the logic level 1, and explain the behavior of the flip-flop.

Comparison between J-K and J-K Master Slave Flip-flop

\approx Keep the circuit of the last exercise.
Connect the switch of the input J also to J of an integrated flip-flop J-K (MasterSlave) present on the module.
\& Carry out the same connection also for the inputs K and CK.
\& Connect the outputs of the new flip- flops to other 2 LEDs.
\& Power the module.
Set the switches alternatively high and detect the differences between the two devices.
\measuredangle Now, set both switches to 1 and analyze the behavior of the new flip- flop.

t_{n}		$\mathrm{t}_{\mathrm{n}+1}$
J	K	$\mathrm{Q}_{\mathrm{n}+1}$
0	0	
0	1	
1	0	
1	1	

Checking the Operation of a Flip-flop D

\& Carry out the circuit of fig. 9.5 a) of a flip-flop type D by means of J-K flip- flops
e Connect the inputs P and R to 1 .
2 Check the operation of the flip-flop D by means of switches $0-1$ of the input D and the Clock.

t_{n}	$\mathrm{t}_{\mathrm{n}+1}$
D	$\mathrm{Q}_{\mathrm{n}+1}$

Checking the Operation of a Flip-flop T

2 Carry out the circuit of fig. 9.6 a) of a flip-flop type T by means of J-K flip-flop
$\&$ Connect the inputs P and R to 1 .
\& Check the operation of the flip-flop T by means of switches $0-1$ to the Clock input.

t_{n}	$\mathrm{t}_{\mathrm{n}+1}$
T	$\mathrm{Q}_{\mathrm{n}+1}$

Lab No. 10

PURPOSE:

To observe the propagation and transition times of CMOS and TTL gates:

EQUIPMENT REQUIRED:

\& Module mod.E05a
2 Power supply unit (+5 V and $\pm 12 \mathrm{~V}$)
2 Dual trace oscilloscope
\& Function generator

Theory:

Introduction

Propagation delay times

The following values are normally specified by the manufacturers for any $\log 1 \mathrm{C}$ gate:
a) $\mathbf{t}_{\mathbf{P H L}}$: propagation delay time with output changing to the low level.
b) $\mathbf{t}_{\mathbf{P L H}}$: propagation delay time with output changing to the high level.

The propagation delay times must be measured inside the fixed threshold values, which for the most part is the 50% of the whole signal variation.

Transition times

The following transition times are normally declared by the manufacturer:
a) $\mathbf{t}_{\mathbf{T H L}}$: transition time with output changing to the low level.
b) $\mathbf{t}_{\mathbf{t L H}}$: transition time with output changing to the high level.

The time measurement is between the 10% and the 90% of the whole signal variation.
Fig. 10.1 shows the propagation delay time and the transition time of an inverting gate.
Figure 10.1

Procedure:

Figure 10.2

2 Assemble the circuit of figure 10.2 with CMOS gates:
\approx Set the function generator for a $0-12 \mathrm{~V}$ square wave and a frequency of 1 MHz .
$\&$ Connect the module to the power supply (+12 V).
25 Connect one of the CMOS gate input to the function generator output and the other one to the positive of the power supply input.
NOTE: Connect the input signal to the devices only when the func tion generator is ON, after the input signal has been correctly set and the device itself has been powered.
${ }_{2}$ Connect the gate output to the first input of the oscilloscope.
\& Connect the output of the first gate to another CMOS gate input and to the second input of the oscilloscope.
2 Superimpose the present signals and find the output signal delay time in respect to the input one, for 1 to 0 and 0 to 1 transitions.
Measure the 0 to 1 and the 1 to 0 transition, times considering the voltages equal to 10% and 90% of the signal maximum;
$\&$ Repeat the procedure with TTL gate.
Compare the speed of the devices, with other families.

Outcome:

2 The $\mathbf{t}_{\mathbf{P H L}}$ of CMOS gates comes out to be:
$\&$ The $\mathbf{t}_{\text {PLh }}$ of CMOS gates comes out to be:
$\&$ The $\mathbf{t}_{\text {THL }}$ of CMOS gates comes out to be:
\qquad
\& The $\mathbf{t}_{\mathbf{t h}}$ of CMOS gates comes out to be: \qquad
2. The $\mathbf{t}_{\text {PhL }}$ of TTL gates comes out to be: \qquad
\approx The $\mathbf{t}_{\text {PLH }}$ of TTL gates comes out to be:
$\&$ The $\mathbf{t}_{\text {THL }}$ of TTL gates comes out to be:
\& The $\mathbf{t}_{\text {TLH }}$ of TTL gates comes out to be:
\qquad
\qquad

LAB NO. 11

PURPOSE:

To implement
a) 2-bit counter circuit
b) Frequency divider circuit

Using JK-Flip-Flop

EQUIPMENT REQUIRED:

Base unit for IPES system
Experiment module E18/EV
Oscilloscope

THEORY:

Counters are digital integrated devices which can state in a well-defined sequence, applying a train pulse across the input.

They are carried out with flip-flop and logic port stages, where each stage supplies an output which, together with the others, indicate the number of pulses received in binary form.

These counters are also called 'BINARY COUNTERS' and can be used apart as counters as frequency dividers, supplying the o / p with a pulse after ' n ' input pulses.

If we apply a fixed frequency pulse train to a counter, rather than individual pulses coming at random intervals, we begin to notice some interesting characteristics and useful relationships between the input clock signal ad the output signal.

Consider a single flip flop with a continuous succession of clock pulses at a fixed frequency, such as the one shown above. We note three useful facts about the output signals seen at Q and Q ' :
a) They are exactly inverted to each other
b) They are perfect square waves (50% duty cycle)
c) They have a frequency just half that of the clock pulse train

The duty cycle of any rectangular waveform refers to the percentage of the full cycle that the signal remains at logic 1 . If the signal spends half its time at logic 1 and the other half at logic 0 , we have a waveform with a 50% duty cycle. This describes a perfect, symmetrical square wave.

Frequency division by an odd number is also possible. The circuit shown below is a demonstration of a divide-by- 3 counter. No gates are required to control the sequence if JK-flip flops are used; feeding the output signals back to the appropriate inputs is sufficient.

Of course it is not possible to get a symmetrical (50% duty cycle) square wave with this circuit. Q0 is at logic 1 for two clock pulses out of three; Q1 is at logic 1 for one clock pulse out of 3. Thus duty cycle of $1 / 3$ (33.33\%) and 2/3 (66.67\%) are available.

Other counting sequences are also possible. If a need exist to have two or more signals in a particular frequency relationship with each other, some extension or variation on the circuits shown can be designed to meet the need.

PROCEDURE:

a) 2-bit Asynchronous Counter:

- Carry out the circuit of Fig-1, a 2-stage asynchronous counter
- Connect all inputs, J and K to logic 1 (i.e +5 V)
- Connect 1 Hz clock to input CK of first flip-flop
- Connect Q0 to CK of second flip-flop
- Connect the two outputs, Q0 and Q1, to decoder/driver
- Connect the outputs of decoder/driver to respective inputs of display
- Power the module and analyze the operation of complete system
b) Frequency Divider
- Carry out the circuit of Fig-2
- Connect the CK (clock) input of both flip-flops to external 1 Hz clock
- Connect both the K input to Q1
- Connect Q0 to J input of second flip-flop
- Connect J-input of first flip-flop to logic $1(+5 \mathrm{~V})$
- Connect first channel of oscilloscope to clock input and second to Q0
- Now disconnect second channel and connect it to Q1
- Observe the frequencies of Q 0 and Q 1 with respect to input clock frequency

OUTCOME:

The output frequency at $\mathrm{Q} 0=$

The output frequency at $\mathrm{Q} 1=$

LAB NO. 12

PURPOSE:

To implement a circuit complement number and then compare it with another number using a magnitude comparator and start a counter when certain condition true.

EQUIPMENT REQUIRED:
Base unit the IPES system
Experiment module E18/EV

THEORY:

A comparator compares two binary numbers and produces an output to show if the two numbers are equal, or if one is higher than other.

$<$	$=$	$>$	$\mathbf{A i}$	$\mathbf{B i}$	$\mathbf{A}<$ \mathbf{B}	$\mathbf{A}=$ \mathbf{B}	$\mathbf{A}>$ \mathbf{B}
0	0	1	0	0	0	0	1
0	0	1	0	1	1	0	0
0	0	1	1	0	0	0	1
0	0	1	1	1	0	0	1
0	1	0	0	0	0	1	0
0	1	0	0	1	1	0	0
0	1	0	1	0	0	0	1
0	1	0	1	1	0	1	0
1	0	0	0	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	0	0	0	1
1	0	0	1	1	1	0	0

The counter used is a synchronous BCD counter, in a synchronous counter all flip-flop stages changes state contemporarily to the arrival of the clock pulse. A higher operating speed can be reached, so that they are more largely used in industrial applications.

We represent negative numbers by putting the symbol "-" in front of number. But a computer doesn't have it so easy. All it knows is bits, so we need to find some way to encode a negative number into a bit pattern so that the computer knows it's a negative value.

Several schemes have been used over the years:

1) Sign and magnitude
2) 1 's complement
3) 2 's complement

If we use binary comparator for numbers in sign magnitude, 1's or 2's complement representation, the result isn't correct. It is caused by sign bit, which is equal 1 for negative numbers but in binary numbers has the biggest weight. To obtain correct result the negative numbers should be complemented (in 1's and 2's complement representation), or both numbers should be tested like during addition (in sign magnitude representation).

Therefore, we have to find out the magnitude for 2's complemented 3-bit numbers in order to compare it with other binary number, to construct a circuit which will calculate the magnitude we have to find out the logic equation of the output using the following table(A,B,C are inputs and D,E are the outputs)

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	1	0
3	0	1	1	1	1
-4	1	0	0	X	X
-3	1	0	1	1	1
-2	1	1	0	1	0
-1	1	1	1	0	1

For designing the logic circuit we are neglecting the -4 value.

The simplified logic equations for obtaining two bit magnitude are:
$\mathrm{D}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}\left[\mathrm{B}^{\prime} \mathrm{C}+\mathrm{BC}^{\prime}\right]$
$\mathrm{E}=\mathrm{C}$

PROCEDURE:

- Implement the equations to generate two bit magnitude of the 3-bit 2's complemented number using the negative gates and switches.
- Connect the signal D and E to the A1 and A0 respectively of comparator's input.
- Connect the B1 and B0 input to the switches.
- Connect the comparators inputs A2, A3 B2, and B3 to ground.
- Connect the RES of counter to the $\mathrm{A}>\mathrm{B}$ output of the comparator
- Connect the input "CK" of counter to clock of 1 Hz .
- Connect both the enablers EN to logic level high.
- Connect the outputs "QA" "QB" "QC" "QD" respectively to the LEDs.
- Observe the counter's output.

OUTCOME

ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 8-Bit μ P Compatible A/D Converters

General Description

The ADC0801, ADC0802, ADC0803, ADC0804 and ADC0805 are CMOS 8-bit successive approximation A/D converters that use a differential potentiometric ladder - similar to the 256R products. These converters are designed to allow operation with the NSC800 and INS8080A derivative control bus with TRI-STATE output latches directly driving the data bus. These A/Ds appear like memory locations or I/O ports to the microprocessor and no interfacing logic is needed.
Differential analog voltage inputs allow increasing the common-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

Features

n Compatible with $8080 \mu \mathrm{P}$ derivatives — no interfacing logic needed - access time - 135 ns
n Easy interface to all microprocessors, or operates "stand alone"
n Differential analog voltage inputs
n Logic inputs and outputs meet both MOS and TTL voltage level specifications
n Works with 2.5 V (LM336) voltage reference
n On-chip clock generator
n 0 V to 5 V analog input voltage range with single 5 V supply
n No zero adjust required
n $0.3^{\prime \prime}$ standard width 20-pin DIP package
n 20-pin molded chip carrier or small outline package
n Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$, or analog span adjusted voltage reference

Key Specifications

n Resolution	8 bits
n Total error	$\pm 1 / 4$ LSB, $\pm 1 / 2$ LSB and ± 1 LSB
n Conversion time	$100 \mu \mathrm{~s}$

Connection Diagram
ADC080X
Dual-In-Line and Small Outline (SO) Packages

DS005671-30
See Ordering Information

Ordering Information

TEMP RANGE		$0^{\circ} \mathrm{C}$ TO $70{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
ERROR	$\pm 1 / 4$ Bit Adjusted			ADC0801LCN
	$\pm 1 / 2$ Bit Unadjusted	ADC0802LCWM		ADC0802LCN
	$\pm 1 / 2$ Bit Adjusted			ADC0803LCN
	± 1 Bit Unadjusted	ADC0804LCWM	ADC0804LCN	ADC0805LCN/ADC0804LCJ
PACKAGE OUTLINE		M20B - Small Outline	N20A - Molded DIP	

Typical Applications

Error Specification (Includes Full-Scale, Zero Error, and Non-Linearity)			
Part Number	Full- Scale Adjusted	$\mathbf{V}_{\text {REF }} / \mathbf{2 = 2 . 5 0 0} \mathbf{V}_{\text {DC }}$ (No Adjustments)	$\mathbf{V}_{\text {REF }} / \mathbf{2 = N o}$ Connection (No Adjustments)
ADC0801	$\pm 1 / 4$ LSB		
ADC0802		$\pm 1 / 2 \mathrm{LSB}$	
ADC0803	$\pm 1 / 2 \mathrm{LSB}$		
ADC0804		$\pm 1 \mathrm{LSB}$	
ADC0805			$\pm 1 \mathrm{LSB}$

Absolute Maximum Ratings
(Notes 1, 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage $\left(\mathrm{V}_{\mathrm{cc}}\right)$ (Note 3)	6.5 V
Voltage	-0.3 V to +18 V
Logic Control Inputs	-0.3 V to $\left(\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}\right)$
At Other Input and Outputs	
Lead Temp. (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (plastic)	$300^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	$215^{\circ} \mathrm{C}$

\quad Infrared $(15$ seconds)	$220^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	875 mW
ESD Susceptibility (Note 10)	800 V

Operating Ratings (Notes 1, 2)

Temperature Range	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$
ADC0804LCJ	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
ADC0801/02/03/05LCN	$-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$
ADC0804LCN	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
ADC0802/04LCWM	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$
Range of $\mathrm{V}_{\text {CC }}$	$4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.3 \mathrm{~V}_{\text {DC }}$

Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
ADC0801: Total Adjusted Error (Note 8)	With Full-Scale Adj. (See Section 2.5.2)			$\pm 1 / 4$	LSB
ADC0802: Total Unadjusted Error (Note 8)	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}$			$\pm 1 / 2$	LSB
ADC0803: Total Adjusted Error (Note 8)	With Full-Scale Adj. (See Section 2.5.2)			$\pm 1 / 2$	LSB
ADC0804: Total Unadjusted Error (Note 8)	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}$			± 1	LSB
ADC0805: Total Unadjusted Error (Note 8)	$\mathrm{V}_{\text {REF }} / 2$-No Connection			± 1	LSB
$\mathrm{V}_{\text {REF }} / 2$ Input Resistance (Pin 9)	ADC0801/02/03/05 ADC0804 (Note 9)	$\begin{gathered} \hline 2.5 \\ 0.75 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 1.1 \end{aligned}$		$\begin{aligned} & \hline \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Analog Input Voltage Range	(Note 4) V(+) or V(-)	Gnd-0.05		$\mathrm{V}_{\mathrm{cc}}+0.05$	V_{DC}
DC Common-Mode Error	Over Analog Input Voltage Range		$\pm 1 / 16$	$\pm 1 / 8$	LSB
Power Supply Sensitivity	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}} \pm 10 \% \text { Over } \\ & \text { Allowed } \mathrm{V}_{\mathrm{IN}}(+) \text { and } \mathrm{V}_{\text {IN }}(-) \\ & \text { Voltage Range (Note 4) } \end{aligned}$		$\pm 1 / 16$	$\pm 1 / 8$	LSB

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
T_{C}	Conversion Time	$\mathrm{f}_{\text {CLK }}=640 \mathrm{kHz}$ (Note 6)	103		114	$\mu \mathrm{s}$
T_{C}	Conversion Time	(Notes 5, 6)	66		73	$1 / \mathrm{f}_{\text {CLK }}$
$\mathrm{f}_{\text {CLK }}$	Clock Frequency Clock Duty Cycle	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$, (Note 5)	$\begin{aligned} & 100 \\ & 40 \end{aligned}$	640	$\begin{gathered} 1460 \\ 60 \end{gathered}$	$\begin{gathered} \hline \mathrm{kHz} \\ \% \end{gathered}$
CR	Conversion Rate in Free-Running Mode	$\overline{\text { INTR }}$ tied to $\overline{W R}$ with $\overline{\mathrm{CS}}=0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$	8770		9708	conv/s
$\mathrm{t}_{\mathrm{W}}(\underline{\mathrm{WR}}) \mathrm{L}$	Width of $\overline{\text { WR }}$ Input (Start Pulse Width)	$\overline{\mathrm{CS}}=0 \mathrm{~V}_{\mathrm{DC}}$ (Note 7)	100			ns
$t_{\text {Acc }}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Data Valid)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		135	200	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{0 \mathrm{H}}$	TRI-STATE Control (Delay from Rising Edge of $\overline{R D}$ to Hi-Z State)	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (See TRI-STATE Test Circuits)		125	200	ns
$t_{w l}, t_{\text {RI }}$	Delay from Falling Edge of $\overline{W R}$ or $\overline{R D}$ to Reset of $\overline{\text { INTR }}$			300	450	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance of Logic Control Inputs			5	7.5	pF

AC Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
C Out $^{\text {TRI-STATE Output }}$Capacitance (Data Buffers)			5	7.5	pF	

CONTROL INPUTS [Note: CLK IN (Pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately]

$\mathrm{V}_{\mathrm{IN}}(1)$	Logical "1" Input Voltage (Except Pin 4 CLK IN)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}_{\mathrm{DC}}$	2.0	15	$\mathrm{~V}_{\mathrm{DC}}$	
$\mathrm{V}_{\mathrm{IN}}(0)$	Logical "0" Input Voltage (Except Pin 4 CLK IN)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$			0.8	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathrm{IN}}(1)$	Logical "1" Input Current (All Inputs)	$\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}_{\mathrm{DC}}$	0.005	1	$\mu \mathrm{~A}_{\mathrm{DC}}$	
$\mathrm{I}_{\mathbb{N}}(0)$	Logical "0" Input Current (All Inputs)	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}_{\mathrm{DC}}$	-1	-0.005	$\mu \mathrm{~A}_{\mathrm{DC}}$	

CLOCK IN AND CLOCK R

$\mathrm{V}_{\mathrm{T}^{+}}$	CLK IN (Pin 4) Positive Going Threshold Voltage	2.7	3.1	3.5	$\mathrm{~V}_{\mathrm{DC}}$	
$\mathrm{V}_{\mathrm{T}^{-}}$	CLK IN (Pin 4) Negative Going Threshold Voltage		1.5	1.8	2.1	$\mathrm{~V}_{\mathrm{DC}}$
V_{H}	CLK IN (Pin 4) Hysteresis $\left(\mathrm{V}_{\mathrm{T}}+-\left(\mathrm{V}_{\mathrm{T}}-\right)\right.$	0.6	1.3	2.0	$\mathrm{~V}_{\mathrm{DC}}$	
$\mathrm{V}_{\text {OUT }}(0)$	Logical "0" CLK R Output Voltage	$\mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A}$ $\mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$				
$\mathrm{V}_{\text {OUT }}(1)$	Logical "1" CLK R Output Voltage	$\mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$ $\mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$	2.4		0.4	$\mathrm{~V}_{\mathrm{DC}}$

DATA OUTPUTS AND INTR

$\mathrm{V}_{\text {Out }}(0)$	Logical "0" Output Voltage Data Outputs INTR Output	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{I}_{\text {OUT }}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & V_{D C} \\ & V_{D C} \end{aligned}$
$\mathrm{V}_{\text {OUT }}(1)$	Logical "1" Output Voltage	$\mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$	2.4			V_{DC}
$\mathrm{V}_{\text {OUT }}(1)$	Logical "1" Output Voltage	$\mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$	4.5			V_{DC}
Iout	TRI-STATE Disabled Output Leakage (All Data Buffers)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	-3		3	$\mu \mathrm{A}_{\mathrm{DC}}$ $\mu A_{D C}$
$\mathrm{I}_{\text {SOURCE }}$		$\mathrm{V}_{\text {Out }}$ Short to Gnd, $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	4.5	6		$m A_{D C}$
$\mathrm{I}_{\text {SINK }}$		$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	9.0	16		$\mathrm{mA}_{\text {DC }}$
POWER SUPPLY						
I_{cc}	Supply Current (Includes Ladder Current) ADC0801/02/03/04LCJ/05 ADC0804LCN/LCWM	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{REF}} / 2=\mathrm{NC}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { and } \overline{\mathrm{CS}}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.1 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to Gnd, unless otherwise specified. The separate A Gnd point should always be wired to the D Gnd.
Note 3: A zener diode exists, internally, from V_{CC} to G d and has a typical breakdown voltage of $7 \mathrm{~V}_{\mathrm{DC}}$
Note 4: For $\mathrm{V}_{\mathrm{IN}}(-) \geq \mathrm{V}_{\mathrm{IN}}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see block diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{Cc} supply. Be careful, during testing at low V_{Cc} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Accuracy is guaranteed at $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$. At higher clock frequencies accuracy can degrade. For lower clock frequencies, the duty cycle limits can be extended so long as the minimum clock high time interval or minimum clock low time interval is no less than 275 ns.
Note 6: With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process. The start request is internally latched, see Figure 4 and section 2.0.

AC Electrical Characteristics (Continued)

Note 7: The $\overline{\mathrm{CS}}$ input is assumed to bracket the $\overline{\mathrm{WR}}$ strobe input and therefore timing is dependent on the $\overline{\mathrm{WR}}$ pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the $\overline{W R}$ pulse (see timing diagrams).
Note 8: None of these A/Ds requires a zero adjust (see section 2.5.1). To obtain zero code at other analog input voltages see section 2.5 and Figure 7.
Note 9: The $\mathrm{V}_{\mathrm{REF}} / 2$ pin is the center point of a two-resistor divider connected from V_{CC} to ground. In all versions of the ADC0801, ADC0802, ADC0803, and ADC0805, and in the ADC0804LCJ, each resistor is typically $16 \mathrm{k} \Omega$. In all versions of the ADC0804 except the ADC0804LCJ, each resistor is typically $2.2 \mathrm{k} \Omega$.
Note 10: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics

Delay From Falling Edge of RD to Output Data Valid vs. Load Capacitance

Full-Scale Error vs Conversion Time

Power Supply Current vs Temperature (Note 9)

DS005671-45

CLK IN Schmitt Trip Levels vs. Supply Voltage

Effect of Unadjusted Offset Error vs. $\mathrm{V}_{\text {REF }} / \mathbf{2}$ Voltage

Linearity Error at Low $\mathbf{V}_{\text {REF }} / 2$ Voltages

Output Current vs
Temperature

DAC0800/DAC0802

8-Bit Digital-to-Analog Converters

General Description

The DAC0800 series are monolithic 8-bit high-speed current-output digital-to-analog converters (DAC) featuring typical settling times of 100 ns . When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features high compliance complementary current outputs to allow differential output voltages of $20 \mathrm{Vp}-\mathrm{p}$ with simple resistor loads as shown in Figure 1. The reference-to-full-scale current matching of better than ± 1 LSB eliminates the need for full-scale trims in most applications while the nonlinearities of better than $\pm 0.1 \%$ over temperature minimizes system error accumulations.

The noise immune inputs of the DAC0800 series will accept TTL levels with the logic threshold pin, V_{LC}, grounded. Changing the V_{LC} potential will allow direct interface to other logic families. The performance and characteristics of the device are essentially unchanged over the full $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply range; power dissipation is only 33 mW with $\pm 5 \mathrm{~V}$ supplies and is independent of the logic input states.

The DAC0800, DAC0802, DAC0800C and DAC0802C are a direct replacement for the DAC-08, DAC-08A, DAC-08C, and DAC-08H, respectively.

Features

n Fast settling output current: 100 ns
n Full scale error: ± 1 LSB
n Nonlinearity over temperature: $\pm 0.1 \%$
n Full scale current drift: $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
n High output compliance: -10 V to +18 V
n Complementary current outputs
n Interface directly with TTL, CMOS, PMOS and others
n 2 quadrant wide range multiplying capability
n Wide power supply range: $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
n Low power consumption: 33 mW at $\pm 5 \mathrm{~V}$
n Low cost

Typical Applications

DS005686-1
FIGURE 1. $\mathbf{\pm 2 0}$ V $_{\text {P-p }}$ Output Digital-to-Analog Converter (Note 5)

Ordering Information

Non-Linearity	Temperature Range	Order Numbers				
		N Package (N16E) (Note 1)	SO Package (M16A)			
$\pm 0.1 \% \mathrm{FS}$		DAC0802LCJ	DAC-08HQ	DAC0802LCN	DAC-08HP	DAC0802LCM
$\pm 0.19 \% \mathrm{FS}$	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	DAC0800LJ	DAC-08Q			
$\pm 0.19 \% \mathrm{FS}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	DAC0800LCJ	DAC-08EQ	DAC0800LCN	DAC-08EP	DAC0800LCM

[^0]Absolute Maximum Ratings (Note 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Power Dissipation (Note 3)
Reference Input Differential Voltage
(V14 to V15)
Reference Input Common-Mode
Range (V14, V15)
Reference Input Current
Logic Inputs
Analog Current Outputs
($\mathrm{V}_{\mathrm{S}^{-}}=-15 \mathrm{~V}$) 4.25 mA
ESD Susceptibility (Note 4)
$\pm 18 \mathrm{~V}$ or 36 V 500 mW V^{-}to V^{+}

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)
Dual-In-Line Package (plastic)
$260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic) $300^{\circ} \mathrm{C}$
Surface Mount Package Vapor Phase (60 seconds) $215^{\circ} \mathrm{C}$ Infrared (15 seconds) $220^{\circ} \mathrm{C}$

Operating Conditions (Note 2)

	Min	Max	Units
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$			
DAC0800L	-55	+125	${ }^{\circ} \mathrm{C}$
DAC0800LC	0	+70	${ }^{\circ} \mathrm{C}$
DAC0802LC	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\text {REF }}=2 \mathrm{~mA}$ and $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ unless otherwise specified. Output characteristics refer to both $\mathrm{I}_{\text {OUT }}$ and $\overline{\mathrm{I}}_{\text {OUT }}$.

Symbol	Parameter	Conditions		C0802			$\begin{aligned} & \text { AC0800 } \\ & \text { AC0800 } \end{aligned}$		Units
			Min	Typ	Max	Min	Typ	Max	
	Resolution		8	8	8	8	8	8	Bits
	Monotonicity		8	8	8	8	8	8	Bits
	Nonlinearity				± 0.1			± 0.19	\%FS
$\mathrm{t}_{\text {s }}$	Settling Time	To $\pm 1 / 2 \mathrm{LSB}$, All Bits Switched		100	135				ns
		"ON" or "OFF", $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
		DAC0800L					100	135	ns
		DAC0800LC					100	150	ns
tPLH,	Propagation Delay	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
tPHL	Each Bit			35	60		35	60	ns
	All Bits Switched			35	60		35	60	ns
$\mathrm{TCl}_{\text {FS }}$	Full Scale Tempco			± 10	± 50		± 10	± 50	ppm/ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {Oc }}$	Output Voltage Compliance	Full Scale Current Change < $1 / 2 \mathrm{LSB}, \mathrm{R}_{\text {OUT }}>20 \mathrm{M} \Omega$ Typ	-10		18	-10		18	V
$\mathrm{I}_{\text {FS } 4}$	Full Scale Current	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}, \mathrm{R} 14=5.000 \mathrm{k} \Omega \\ & \mathrm{R} 15=5.000 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1.984	1.992	2.000	1.94	1.99	2.04	mA
$\mathrm{I}_{\text {fss }}$	Full Scale Symmetry	$\mathrm{I}_{\text {FS4 }}-\mathrm{I}_{\text {FS } 2}$		± 0.5	± 4.0		± 1	± 8.0	$\mu \mathrm{A}$
Izs	Zero Scale Current			0.1	1.0		0.2	2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {FSR }}$	Output Current Range	$\mathrm{V}^{-}=-5 \mathrm{~V}$	0	2.0	2.1	0	2.0	2.1	mA
		$\mathrm{V}^{-}=-8 \mathrm{~V}$ to -18V	0	2.0	4.2	0	2.0	4.2	mA
	Logic Input Levels								
V_{IL}	Logic "0"	$\mathrm{V}_{\mathrm{LC}}=0 \mathrm{~V}$			0.8			0.8	v
V_{IH}	Logic "1"		2.0			2.0			V
	Logic Input Current	$\mathrm{V}_{\mathrm{LC}}=0 \mathrm{~V}$							
1 IL	Logic "0"	$-10 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+0.8 \mathrm{~V}$		-2.0	-10		-2.0	-10	$\mu \mathrm{A}$
I_{H}	Logic "1"	$2 \mathrm{~V} \leq \mathrm{V}_{1 \mathbb{N}} \leq+18 \mathrm{~V}$		0.002	10		0.002	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IS }}$	Logic Input Swing	$\mathrm{V}^{-}=-15 \mathrm{~V}$	-10		18	-10		18	V
$\mathrm{V}_{\text {THR }}$	Logic Threshold Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	-10		13.5	-10		13.5	V
I_{15}	Reference Bias Current			-1.0	-3.0		-1.0	-3.0	$\mu \mathrm{A}$
di/dt	Reference Input Slew Rate	(Figure 11)	4.0	8.0		4.0	8.0		$\mathrm{mA} / \mathrm{\mu s}$
PSSI ${ }_{\text {FS }+}$	Power Supply Sensitivity	$4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 18 \mathrm{~V}$		0.0001	0.01		0.0001	0.01	\%/\%
$\mathrm{PSSI}_{\text {FS }}$		$\begin{aligned} & -4.5 \mathrm{~V} \leq \mathrm{V}^{-} \leq 18 \mathrm{~V} \\ & \mathrm{I}_{\text {REF }}=1 \mathrm{~mA} \end{aligned}$		0.0001	0.01		0.0001	0.01	\%/\%

Electrical Characteristics (Continued)
The following specifications apply for $V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=2 \mathrm{~mA}$ and $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ unless otherwise specified. Output characteristics refer to both $\mathrm{I}_{\text {OUT }}$ and $\overline{\mathrm{I}}_{\text {OUT }}$.

Symbol	Parameter	Conditions	DAC0802LC			DAC0800L/ DAC0800LC			Units
			Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { I+ } \\ & \text { I- } \end{aligned}$	Power Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA}$		$\begin{gathered} 2.3 \\ -4.3 \end{gathered}$	$\begin{gathered} 3.8 \\ -5.8 \end{gathered}$		$\begin{gathered} 2.3 \\ -4.3 \end{gathered}$	$\begin{gathered} 3.8 \\ -5.8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \text { I+ } \\ & \text { I- } \end{aligned}$		$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V},-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{REF}}=2 \mathrm{~mA}$		$\begin{gathered} 2.4 \\ -6.4 \end{gathered}$	$\begin{gathered} 3.8 \\ -7.8 \end{gathered}$		$\begin{gathered} 2.4 \\ -6.4 \end{gathered}$	$\begin{gathered} 3.8 \\ -7.8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \text { I+ } \\ & \text { I- } \end{aligned}$		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=2 \mathrm{~mA}$		$\begin{gathered} 2.5 \\ -6.5 \end{gathered}$	$\begin{gathered} 3.8 \\ -7.8 \end{gathered}$		$\begin{gathered} 2.5 \\ -6.5 \end{gathered}$	$\begin{gathered} 3.8 \\ -7.8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
P_{D}	Power Dissipation	$\begin{aligned} & \pm 5 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA} \\ & 5 \mathrm{~V},-15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=2 \mathrm{~mA} \\ & \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=2 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \hline \hline 33 \\ 108 \\ 135 \end{gathered}$	$\begin{gathered} \hline \hline 48 \\ 136 \\ 174 \end{gathered}$		$\begin{gathered} \hline \hline 33 \\ 108 \\ 135 \end{gathered}$	$\begin{gathered} \hline \hline 48 \\ 136 \\ 174 \end{gathered}$	$\begin{aligned} & \hline \hline \mathrm{mW} \\ & \mathrm{~mW} \\ & \mathrm{~mW} \end{aligned}$

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 3: The maximum junction temperature of the DAC0800 and DAC0802 is $125^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the Dual-In-Line J package must be derated based on a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$, junction-to-ambient, $175^{\circ} \mathrm{C} / \mathrm{W}$ for the molded Dual-In-Line N package and $100^{\circ} \mathrm{C} / \mathrm{W}$ for the Small Outline M package.

Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Pin-out numbers for the DAC080X represent the Dual-In-Line package. The Small Outline package pin-out differs from the Dual-In-Line package.

Connection Diagrams

Top View

See Ordering Information

Block Diagram (Note 5)

DS005686-2

Typical Performance Characteristics

Full Scale Current vs Reference Current

Reference Amp
Common-Mode Range

DS005686-25
Note. Positive common-mode range is always
(V+) - 1.5 V .

LSB Propagation Delay vs I_{FS}

Reference Input Frequency Response

DS005686-24
Curve 1: $\mathrm{C}_{\mathrm{C}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=2 \mathrm{Vp}-\mathrm{p}$ centered at 1 V .
Curve 2: $\mathrm{C}_{\mathrm{C}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mVp}$-p centered at 200 mV .
Curve 3: $\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mVp}-\mathrm{p}$ centered at 0 V and applied through 50Ω connected to pin 14.2 V applied to R14.
$\mathbf{V}_{\mathbf{T H}}-\mathbf{V}_{\mathrm{LC}} \mathbf{v s}$ Temperature

DS005686-27

Output Current vs Output Voltage（Output Voltage Compliance）

\mathbf{V}_{D}－OUITIT YOLTAEE \boldsymbol{M}

Output Voltage Compliance vs Temperature

DS005686－29

DS005686－28

Power Supply Current
vs＋V vs＋V

Power Supply Current vs－V

DS005686－32

Bit Transfer Characteristics

DS005686－30
Note．B1－B8 have identical transfer
characteristics．Bits are fully switched with less than $1 / 2$ LSB error，at less than $\pm 100 \mathrm{mV}$ from actual threshold．These switching points are guaranteed to lie between 0.8 and 2 V over the operating temperature range $\left(V_{L C}=0 V\right)$ ．

Power Supply Current vs Temperature

Equivalent Circuit

FIGURE 2.

The DCROOA is a dual，normally cloced，single－pole－ singlo throw（SPST）analog switch．This CMOS switch can be operatod with power supplies ranging from $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ ．The DC200A has guaranteed break－ belore－make switching．Its maximum tum－off time is 500 na ，and tis maximum tum－on time is 100 ns ．
Maxim quarantees that the DG200A will not letch－up if the power supplies are turnec off with input signals still connected as long as absolute maximum ratinge mor not violated．
Compered to the original manuflactures＇s product， Mexim＇s Dereon consumes significamity lower power， making it better eutiod for portable applications．

－mproved 2nd Sourcel Power Supply Current ＜3iouna
－Wido supply Range $\pm 45 \mathrm{VV}$ to $\pm 18 \mathrm{Y}$
－Singte Supply Operation
－Non－Letching whit Suppliee Troned－eff and Input Signale PTuem
－CimOs and TIL Loqte Compatible
－Monolimile，Low Power CROS Deajn
Ordering Information

PART	TEMP．RAMEE	PN－PACKAGE
DG200AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead CERDIP
DG200ABK	$-25^{\circ} \mathrm{C}$＋10＋859	14 Lead CERDP＊
DE200ACK	$\mathrm{O}^{+} \mathrm{Cbm}+7 \mathrm{CO}^{\circ} \mathrm{C}$	14 Lead CERDIP
DG200ACN	$0^{\circ} \mathrm{C}$ 明＋7090	14 Lead Plastic OIP
DGE004D	$-40^{\circ} \mathrm{C}$ C $00+85^{\circ} \mathrm{C}$	14 Lead Fiaste D：
DGrandicy	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14Lat 50
DGZOMADY		14 Lend SO
QGegoach	$0^{\circ} \mathrm{C}$ 20 $+70^{\circ} \mathrm{C}$	Dice
Desmaka	$\cos ^{\circ} \mathrm{C}$ 加 $+126^{\circ} \mathrm{C}$	10 Frn Matal Con＇
DGROMABA	$-26^{\circ} \mathrm{C}$ 䜣 $+85^{\circ} \mathrm{C}$	10 Pín Medel Con＇
DG8009CA	$0^{\circ} \mathrm{C}$ te $+70^{\circ} \mathrm{C}$	10 Pin mex Cen ${ }^{\text {a }}$

Contace factory for aveliatiny．
$\xrightarrow{\longrightarrow}$ Phe Gomilumatom
Top Vew

\checkmark matmien mocata

Progremmable Can Amplifior

Dud Monolfthic SPST CIMOS Analog Switich

ABOUTE MAXGUN RATMAS

Oneme or 2bind, wimetever cecurs fiot.	
Contit, Ary Termmal Exeopt 8 or D.............................shmi	
[Pulod et 1mear, 10\% dity ojcle mexi -..................... $\mathbf{1 0 0 m A}$	
	$150^{\circ} \mathrm{C}$

 hevertan

					T	
Paxy	1794		coustiout	Dotan	Deronexp	
				Non Trp		
-						
Aralog stinne Finge (100el)	Vmanca			-10 76	-15 6	V
Drakeoura	Pramil			4 70	468	0
80xntor			$V_{5}=194, V_{0}=-19$	DOH 20	0.0180	
崖			$V_{0}=-14 \times 2009$	-20-0.0	-60-00\%	
Din OFF			$\mathrm{V}_{4}=-194 \% \mathrm{~V}_{5}=14 \mathrm{y}$	00020	0.018	n
			$V=14 y_{1} V_{D}=-144$	-20 -4.03	-80 -0.02	ne
Drin ON Lenaye			$v_{5}=y_{0}=14 N$	0.120	0.150	
Orrunt (Na			$\mathrm{V}_{6}=10=-4 \mathrm{~W}$	-10 $\quad-0.1$	-8.0 -0.1	
패ㄴㅜㅏ						
haput Outhet whit lipat	INen		$\mathrm{M}=24 \mathrm{~N}$	-10 00000	-1.0 00000	
				0.0351 .0	$0.00 \% 1.0$	
Infut Gurment wht input Vinge Cow	11.		$\mathrm{H}_{\mathbf{n}}=0 \mathrm{~V}$	-10 -0.0015	-1.0-0.0018	M
Dracer						
Tn-ONThine	+	Eae Ewitah	There Tat Craut	440 1000	4401000	
TunOFF Titue	. 0		(9une 1)	70.00	$70 \quad 003$	Ti
Chares mination	0	$a_{1}=10$		10	${ }^{5} 0$	PC
Soure CrF Copmatinou	$C_{\text {cond }}$	$f=$ 40xita	$\mathrm{V}=0 \mathrm{~V}$	08	08	
Dinin CFF Crpadionot	$\mathrm{Ca}_{\text {anm }}$	$\mathrm{V}_{6}=8 \mathrm{y}$	W=W	0.0	00	PF
Chentil ON Ompaftmea	Cbprom^{+}	B40\%	$V_{0}=V_{0}=0 \%$	85	20	m
CFF komiton Floures (Nota $\mathrm{E}_{\text {a }}$			-	76	76	
				0	0	6

Dual Monolithic SPST CMOS Analog Swltich

-

mamberter	Erinel	THTEONDITOM	Limm						UnTr
			Dereen			Denepmerd			
					\max		$\overline{T M P}$		
Ex+my									
Poultre Eupply Currant	$1+$	Both Charnaly ON or OFF Vn 0 and 2.4		100	309		200	800	
Nroptive Euppty Curuat	[-		-10	-0.1		-100	-a, 1		m

numertit	Eniect	TEET Compriome		네T		uars
				Derata	Detionac	
EWICN						
$\begin{aligned} & \text { Anclog 8tanal Rence } \\ & \text { (Nomen 1) } \end{aligned}$	Vnercos			-15 \%	-15 15	v
$\begin{aligned} & \text { Drin-Bourae } \\ & \text { ONRelntence } \end{aligned}$	Pravar			100	100	D
Bouree OF Lelage Cument	leman	$\mathbf{H}_{4}=2.20$	$V_{4}=14 \% V_{0}=-19 \mathrm{~V}$	100	100	
			$V_{0}=-1 N_{1} V_{0}=1 / \mathrm{V}$	-100	-100	
Drin CFF Lenceqp Cuhnent	Iotorion		$V_{0}=-1 W_{1} v_{0}=14 \mathrm{~V}$	100	100	A
			$\mathrm{V}=14 \mathrm{y} \mathrm{V}_{0}=-19 \mathrm{~V}$	-100	-100	a
Drin ON Lemorete Cument (Nots 4)		$\mathbf{V}_{\boldsymbol{p}}=\mathbf{0 . E V}$	$\mathrm{V}=\mathrm{V}_{\mathrm{b}}=1 \mathrm{NV}$	200	200	
			$V_{8}=V_{p}=-14 \%$	-200	-200	
Emet						
Input Gurculd Whate High	WH	$y_{n}=2 \mathrm{~V}_{1} y_{n}=16 \mathrm{~V}$		- 0	-10	A
				10	6	
$\begin{aligned} & \text { Inpat Gurunt' } \\ & \text { Voltasp Low } \end{aligned}$	Ine		$\mathrm{V}=\mathrm{OV}$	-10	-10	

 to madmum curment reding
 In thite dome mowt.

Dual Monolithic SPST CMOS Analog Switch

Toet Circuits

Figure 1. Switching Time Test Circuit

Figure 2. Charge Injection Test Circuit

Figure 3. OFF Isolation Test Circuit

LM741

Operational Amplifier

General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C is identical to the LM741/LM741A except that the LM741C has their performance guaranteed over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Connection Diagrams

Note 1: LM741H is available per JM38510/10101
Order Number LM741H, LM741H/883 (Note 1),
LM741AH/883 or LM741CH
See NS Package Number H08C

DS009341-3
Order Number LM741J, LM741J/883, LM741CN See NS Package Number J08A, M08A or N08E

Order Number LM741W/883 See NS Package Number W10A

Typical Application
Offset Nulling Circuit

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 7)

	LM741A	LM741	LM741C
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	500 mW
Power Dissipation (Note 3)	500 mW	500 mW	$\pm 30 \mathrm{~V}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Input Voltage (Note 4)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	Continuous
Output Short Circuit Duration	Continuous	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$		
Soldering Information		$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
N-Package (10 seconds)	$260^{\circ} \mathrm{C}$		$300^{\circ} \mathrm{C}$
J- or H-Package (10 seconds)	$300^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 8)
400V
400 V
400V
Electrical Characteristics
(Note 5)

Parameter	Conditions	LM741A			LM741			LM741C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega \end{aligned}$		0.8	3.0		1.0	5.0		2.0	6.0	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	$\begin{aligned} & \mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }} \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \end{aligned}$			4.0			6.0			7.5	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Average Input Offset Voltage Drift				15							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Adjustment Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	± 10				± 15			± 15		mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0	30		20	200		20	200	nA
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }}$			70		85	500			300	nA
Average Input Offset Current Drift				0.5							$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	80		80	500		80	500	nA
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }}$			0.210			1.5			0.8	$\mu \mathrm{A}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	1.0	6.0		0.3	2.0		0.3	2.0		$\mathrm{M} \Omega$
	$\begin{aligned} & \mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }} \\ & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \end{aligned}$	0.5									$\mathrm{M} \Omega$
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							± 12	± 13		V
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {AMAX }}$				± 12	± 13					V

Electrical Characteristics (Note 5) (Continued)

Parameter	Conditions	LM741A			LM741			LM741C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \end{aligned}$	50			50	200		20	200		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
	$\begin{aligned} & \mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }}, \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 2 \mathrm{~V} \end{aligned}$	32 10			25			15			V / mV V / mV V/mV
Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 16 \\ & \pm 15 \\ & \hline \end{aligned}$									$\begin{aligned} & \text { V } \\ & \mathrm{V} \end{aligned}$
	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$				$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \text { V } \\ & \mathrm{V} \end{aligned}$
Output Short Circuit Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	25	$\begin{aligned} & 35 \\ & 40 \\ & \hline \end{aligned}$		25			25		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\mathrm{AMIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{AMAX}} \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CM}}= \pm 12 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \mathrm{~V}_{\mathrm{CM}}= \pm 12 \mathrm{~V} \\ & \hline \end{aligned}$	80	95		70	90		70	90		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Supply Voltage Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }} \\ & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \end{aligned}$	86	96		77	96		77	96		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Transient Response Rise Time Overshoot	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unity Gain		$\begin{gathered} 0.25 \\ 6.0 \end{gathered}$	$\begin{gathered} 0.8 \\ 20 \end{gathered}$		$\begin{gathered} 0.3 \\ 5 \end{gathered}$			$\begin{gathered} 0.3 \\ 5 \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \% \end{aligned}$
Bandwidth (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.437	1.5								MHz
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unity Gain	0.3	0.7			0.5			0.5		V/us
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					1.7	2.8		1.7	2.8	mA
Power Consumption	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		80	150		50	85		50	85	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
LM741A	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {AMIN }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {AMAX }} \end{aligned}$			$\begin{aligned} & 165 \\ & 135 \end{aligned}$							$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
LM741	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {AMIN }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {AMAX }} \end{aligned}$					$\begin{aligned} & 60 \\ & 45 \end{aligned}$	$\begin{gathered} 100 \\ 75 \end{gathered}$				$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

Note 2: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Electrical Characteristics (Note 5) (Continued)
Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_{j} max. (listed under "Absolute Maximum Ratings"). $T_{j}=T_{A}+\left(\theta_{j A} P_{D}\right)$.

Thermal Resistance	Cerdip (J)	DIP (N)	HO8 (H)	SO-8 (M)
θ_{jA} (Junction to Ambient)	$100^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$170^{\circ} \mathrm{C} / \mathrm{W}$	$195^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{j} \mathrm{C}}$ (Junction to Case)	N / A	N / A	$25^{\circ} \mathrm{C} / \mathrm{W}$	N / A

Note 4: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 5: Unless otherwise specified, these specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
Note 6: Calculated value from: BW $(\mathrm{MHz})=0.35 /$ Rise Time $(\mu \mathrm{s})$
Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A
Note 8: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Schematic Diagram

DS009341-1

Physical Dimensions inches (millimeters) unless otherwise noted

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

LF198/LF298/LF398, LF198A/LF398A Monolithic Sample-and-Hold Circuits

General Description

The LF198/LF298/LF398 are monolithic sample-and-hold circuits which utilize BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as $6 \mu \mathrm{~s}$ to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin, and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of $1 \mathrm{MHz} \mathrm{op} \mathrm{amps} \mathrm{without} \mathrm{having} \mathrm{sta-}$ bility problems. Input impedance of $10^{10} \Omega$ allows high source impedances to be used without degrading accuracy.
P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as $5 \mathrm{mV} / \mathrm{min}$ with a $1 \mu \mathrm{~F}$ hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feed-through from input to output in the hold mode, even for input signals equal to the supply voltages.

Features

n Operates from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies
n Less than 10μ s acquisition time
n TTL, PMOS, CMOS compatible logic input
n 0.5 mV typical hold step at $\mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$
n Low input offset
n 0.002% gain accuracy
n Low output noise in hold mode
n Input characteristics do not change during hold mode
n High supply rejection ratio in sample or hold
n Wide bandwidth
n Space qualified, JM38510
Logic inputs on the LF198 are fully differential with low input current, allowing direct connection to TTL, PMOS, and CMOS. Differential threshold is 1.4 V . The LF198 will operate from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies.
An " A " version is available with tightened electrical specifications.

Typical Connection and Performance Curve

Functional Diagram

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.	
Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Package	
Limitation) (Note 2)	500 mW
Operating Ambient Temperat	ange
LF198/LF198A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LF298	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LF398/LF398A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Input Voltage	Equal to Supply Voltage
Logic To Logic Reference	
Differential Voltage (Note 3	+7V, -30V
Output Short Circuit Duration	Indefinite

Hold Capacitor Short
Circuit Duration
10 sec
Lead Temperature (Note 4)
H package (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
N package (Soldering, 10 sec.$) \quad 260^{\circ} \mathrm{C}$
M package:
Vapor Phase (60 sec.$) \quad 215^{\circ} \mathrm{C}$
Infrared (15 sec .) $220^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA}) (typicals)
H package $215^{\circ} \mathrm{C} / \mathrm{W}$ (Board mount in still air)
$85^{\circ} \mathrm{C} / \mathrm{W}$ (Board mount in
400LF/min air flow)
N package $115^{\circ} \mathrm{C} / \mathrm{W}$
M package $106^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} (H package, typical) $20^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

The following specifcations apply for $-\mathrm{V}_{\mathrm{S}}+3.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+\mathrm{V}_{\mathrm{S}}-3.5 \mathrm{~V},+\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$, $R_{L}=10 \mathrm{k} \Omega$, LOGIC REFERENCE $=0 \mathrm{~V}$, LOGIC HIGH $=2.5 \mathrm{~V}$, LOGIC LOW $=0 \mathrm{~V}$ unless otherwise specified.

Parameter	Conditions	LF198/LF298			LF398			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage, (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ Full Temperature Range		1	3		2	$\begin{gathered} \hline 7 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Bias Current, (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ Full Temperature Range		5	$\begin{aligned} & 25 \\ & 75 \end{aligned}$		10	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{10}			10^{10}		Ω
Gain Error	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ Full Temperature Range		0.002	$\begin{gathered} 0.005 \\ 0.02 \end{gathered}$		0.004	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Feedthrough Attenuation Ratio at 1 kHz	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$	86	96		80	90		dB
Output Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \text { "HOLD" mode }$ Full Temperature Range		0.5	$\begin{aligned} & 2 \\ & 4 \end{aligned}$		0.5	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
"HOLD" Step, (Note 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\text {OUT }}=0$		0.5	2.0		1.0	2.5	mV
Supply Current, (Note 5)	$\mathrm{T}_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$		4.5	5.5		4.5	6.5	mA
Logic and Logic Reference Input Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		2	10		2	10	$\mu \mathrm{A}$
Leakage Current into Hold Capacitor (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Note } 7)$ Hold Mode		30	100		30	200	pA
Acquisition Time to 0.1\%	$\begin{aligned} & \Delta \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{h}}=1000 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F} \end{aligned}$		$\begin{gathered} \hline 4 \\ 20 \end{gathered}$			$\begin{gathered} \hline 4 \\ 20 \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Hold Capacitor Charging Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$		5			5		mA
Supply Voltage Rejection Ratio	$\mathrm{V}_{\text {OUT }}=0$	80	110		80	110		dB
Differential Logic Threshold	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.8	1.4	2.4	0.8	1.4	2.4	V
Input Offset Voltage, (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ Full Temperature Range		1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		2	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Bias Current, (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ Full Temperature Range		5	$\begin{aligned} & 25 \\ & 75 \end{aligned}$		10		$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$

Electrical Characteristics

The following specifcations apply for $-\mathrm{V}_{\mathrm{S}}+3.5 \mathrm{~V} \leq \mathrm{V}_{I N} \leq+\mathrm{V}_{\mathrm{S}}-3.5 \mathrm{~V},+\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LOGIC REFERENCE $=0 \mathrm{~V}$, LOGIC HIGH $=2.5 \mathrm{~V}$, LOGIC LOW $=0 \mathrm{~V}$ unless otherwise specified.

Parameter	Conditions	LF198A			LF398A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{10}			10^{10}		Ω
Gain Error	$T_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ Full Temperature Range		0.002	$\begin{gathered} \hline 0.005 \\ 0.01 \end{gathered}$		0.004	$\begin{gathered} \hline 0.005 \\ 0.01 \end{gathered}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$
Feedthrough Attenuation Ratio at 1 kHz	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$	86	96		86	90		dB
Output Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, "HOLD" mode Full Temperature Range		0.5	$\begin{aligned} & \hline 1 \\ & 4 \end{aligned}$		0.5	$\begin{aligned} & \hline 1 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline \bar{\Omega} \\ & \Omega \end{aligned}$
"HOLD" Step, (Note 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\text {OUT }}=0$		0.5	1		1.0	1	mV
Supply Current, (Note 5)	$\mathrm{T}_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$		4.5	5.5		4.5	6.5	mA
Logic and Logic Reference Input Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		2	10		2	10	$\mu \mathrm{A}$
Leakage Current into Hold Capacitor (Note 5)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Note } 7)$ Hold Mode		30	100		30	100	pA
Acquisition Time to 0.1\%	$\begin{aligned} & \hline \Delta \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{h}}=1000 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F} \end{aligned}$		$\begin{gathered} \hline \hline 4 \\ 20 \end{gathered}$	$\begin{gathered} \hline \hline 6 \\ 25 \end{gathered}$		$\begin{gathered} \hline \hline 4 \\ 20 \end{gathered}$	$\begin{gathered} \hline \hline 6 \\ 25 \end{gathered}$	$\begin{aligned} & \hline \hline \mathrm{S} \\ & \mu \mathrm{~s} \end{aligned}$
Hold Capacitor Charging Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$		5			5		mA
Supply Voltage Rejection Ratio	$\mathrm{V}_{\text {OUT }}=0$	90	110		90	110		dB
Differential Logic Threshold	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.8	1.4	2.4	0.8	1.4	2.4	V

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\mathrm{JMAX}}, \theta_{\mathrm{JA}}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{\text {JA }}$, or the number given in the Absolute Maximum Ratings, whichever is lower. The maximum junction temperature, $\mathrm{T}_{\mathrm{JMAX}}$, for the LF198/LF198A is $150^{\circ} \mathrm{C}$; for the LF298, $115^{\circ} \mathrm{C}$; and for the LF398/LF398A, $100^{\circ} \mathrm{C}$.
Note 3: Although the differential voltage may not exceed the limits given, the common-mode voltage on the logic pins may be equal to the supply voltages without causing damage to the circuit. For proper logic operation, however, one of the logic pins must always be at least 2 V below the positive supply and 3 V above the negative supply.
Note 4: See AN-450 "Surface Mounting Methods and their effects on Product Reliability" for other methods of soldering surface mount devices.
Note 5: These parameters guaranteed over a supply voltage range of ± 5 to $\pm 18 \mathrm{~V}$, and an input range of $-\mathrm{V}_{\mathrm{S}}+3.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+\mathrm{V}_{\mathrm{S}}-3.5 \mathrm{~V}$.
Note 6: Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. 1 pF , for instance, will create an additional 0.5 mV step with a 5 V logic swing and a $0.01 \mu \mathrm{~F}$ hold capacitor. Magnitude of the hold step is inversely proportional to hold capacitor value.
Note 7: Leakage current is measured at a junction temperature of $25^{\circ} \mathrm{C}$. The effects of junction temperature rise due to power dissipation or elevated ambient can be calculated by doubling the $25^{\circ} \mathrm{C}$ value for each $11^{\circ} \mathrm{C}$ increase in chip temperature. Leakage is guaranteed over full input signal range.
Note 8: A military RETS electrical test specification is available on request. The LF198 may also be procured to Standard Military Drawing \#5962-8760801GA or to MIL-STD-38510 part ID JM38510/12501SGA.

Typical Performance Characteristics

Aperture Time
(Note 9)

Dielectric Absorption
Error in Hold Capacitor

DS005692-18

Dynamic Sampling Error

Note 9: See Definition of Terms

Output Droop Rate

Leakage Current into Hold Capacitor

Power Supply Rejection

Hold Step

Phase and Gain (Input to Output, Small Signal)

DS005692-24

Output Short Circuit Current

"Hold" Settling Time
(Note 10)

Gain Error

DS005692-25

Output Noise

[^0]: Note 1: Devices may be ordered by using either order number.

