Department of Electronic Engineering

NED University of Engineering & Technology

PRACTICAL WORKBOOK

For the course

Computer and Programming (EL-105)
F.E (Electronic)

Instructor Name:

Student Name:

Roll no: Batch:
Semester: Year:
Department:

LABORATORY WORKBOOK
FOR THE COURSE

EL-105 COMPUTER AND PROGRAMMING

Prepared by
Dr. Danish Mahmood Khan

Assistant Professor

Approved By

THE BOARD OF STUDIES OF DEPARTMENT OF ELECTRONIC
ENGINEERING

CONTENTS

S.
Level List of Experiments
NO P
1 i To provide students with hands-on experience to understand the basic components of a computer
system, the role of peripherals, and the functional units of a CPU.
) 5 Introduction to C++ Integrated Development Environment (IDE), installation, and an overview of
its features.
To examine the fundamental components of the C++ language, including data types and input-output
3 C5 | functions, to identify their characteristics, distinctions, and how they contribute to program
functionality.
To synthesize the principles of decision making in C++ using if and nested if statements, analyze
4 C5 | complex scenarios, and propose logical solutions, demonstrating a higher-level understanding of
control flow and problem-solving.
To analyze and evaluate the functioning of conditional statements, such as if-else, else-if, nested if-
5 C5 | else, and Switch-Case within the context of C++ programming, and to discern their respective
applications and implications in program flow control.
To cultivate a comprehensive understanding of C++ loops by employing for loops and nested for
6 5 loops in diverse scenarios and demonstrate proficiency in basic and advanced operations,
comprehend multi-dimensional data processing, generate dynamic patterns, and optimize loop
performance for enhanced code efficiency.
To develop a thorough understanding of while and do-while loops in C++ by adeptly applying these
7 C5 constructs in various contexts. Demonstrate skill in executing fundamental and advanced operations,
grasp intricate details in iterative data processing, and optimize loop performance for enhanced code
efficiency.
To gain a comprehensive understanding of structures in C++, covering their definition, declaration,
8 C5 | and implementation. Apply this knowledge to create and manipulate structured data, demonstrating
proficiency in solving programming challenges through the effective utilization of C++ structures.
9 cs To demonstrate the principles and execution of functions in C++ and create user-defined functions,
showcasing an advanced application of programming concepts.
10 s To comprehend the concepts of arrays and strings in C++, including their implementation and
manipulation, and to apply these acquired skills in addressing a variety of practical scenarios.
1 C5 To demonstrate effective utilization of pointers in tasks such as dynamic memory allocation, data
manipulation, and code optimization for addressing and solving programming challenges.
Synthesize object-oriented programming principles to design and implement classes, demonstrate
12 C5 | inheritance relationships, and create effective object-oriented solutions for various real-life
problems.
13 C5 | Open Ended Lab

S. No Date Lab Session Marks Sign
1 Lab Session 01
2 Lab Session 02
3 Lab Session 03
4 Lab Session 04
5 Lab Session 05
6 Lab Session 06
7 Lab Session 07
8 Lab Session 08
9 Lab Session 09
10 Lab Session 10
11 Lab Session 11
12 Lab Session 12

13

Lab Session 13

Objective:

To provide students with hands-on experience to understand the basic components of a computer system,

Lab Session 1

the role of peripherals, and the functional units of a CPU.

Components:

Theory:

Computer

A computer is an electronic machine that takes input from the user (data), processes the given input, and generates
output in the form of useful information.

The most elementary computing concepts as shown in Figure 1-1 include receiving input—known as data— from the
user, manipulating the input according to the given set of instructions and delivering the output—known as
information—to the user.

Computers (laptops or desktops)
Projector and screen
Various computer peripherals (keyboard, mouse, printer, scanner, etc.)
CPU chip (for demonstration purposes)

Motherboard (for demonstration purposes)

Power supply unit (for demonstration purposes)

RAM modules (for demonstration purposes)

Hard drive (for demonstration purposes)

Various cables (power cables, USB cables, etc.)

7~

Input

Process

Qutput

Input device
Raw data
Y Storage
CPU > Memory

Processed data
Y

Output device

Peripheral Devices:

Figure 1-1 Elementary Computing Concept

Peripheral devices are hardware components that connect to a computer and provide additional functionality and

5

features. These devices are called "peripherals™ because they are auxiliary to the central processing unit (CPU) and
main components of the computer. Peripheral devices serve various purposes, such as input, output, or storage.

Central Processing Unit:

The CPU (Central Processing Unit) is the core component of a computer responsible for executing instructions and
performing data processing. The CPU consists of several functional units that work together to carry out these tasks.
These functional units include:

Arithmetic Unit
Logic Unit

Control Unit

Main Memory Unit
Registers

Procedure:

Remind yourself of the importance of handling computer components with care and ensuring that the
computer is powered off and unplugged before any internal exploration.

a. Hands-on Peripheral Interaction:

1.

©ooNOE WD

e
N RO

Ensure that all the necessary peripherals, including the keyboard and mouse, are connected to the
computer.

Start by practicing typing on the keyboard.

Type a few sentences, words, or your name into a text document to get a feel for the keyboard.
Move the mouse on the mousepad to see how it moves the cursor on the screen.

Click the left and right mouse buttons to understand their functions.

Try dragging and releasing.

Open a sample document or application.

Practice using the mouse to:

Click on icons, buttons, or links.

. Right-click to access context menus.
. Scroll using the mouse wheel.
. If other peripherals are available (e.g., printer or scanner) explore and interact with these peripherals under

supervision.

b. Opening a Computer Case:

O N R~ ODdDRE

Before proceeding, ensure that the computer is powered off and unplugged from the electrical outlet.
Locate the computer case, which is the outer housing of the desktop computer.

Ensure you have a screwdriver ready for opening the case.

Observe the computer case for screws or fasteners that secure the side panel.

Commonly, there are two or more screws on the rear side of the case.

Use the screwdriver to carefully remove the screws from the side panel of the computer case.

Place the screws in a safe location, so they aren't lost.

Depending on the computer case design, you may need to slide the side panel back or unscrew a latch to
open it.

Gently slide or open the side panel to reveal the internal components.

c. Interactive CPU Demonstration:

1.

N

O N A

Once the case is open, take a moment to visually inspect the interior of the computer.

Look for the major components, including the motherboard, CPU (Central Processing Unit), and RAM
(Random Access Memory).

Identify the largest circuit board inside the computer. This is the motherboard.

Observe the various connectors, slots, and ports on the motherboard.

Locate the CPU, which is a small chip mounted on the motherboard.

Take note of its position and any markings or labels on the CPU.

Identify the RAM modules, which are usually small, rectangular chips mounted on the motherboard.
Note the number of RAM modules and their locations.

d. Closing a Computer Case:

1. After inspecting the internal components, carefully close the computer case.
2. Make sure it is securely fastened and the screws are reattached.
Observations:

Results:

Lab Session 2

Objective:

To analyze the C++ Integrated Development Environment (IDE) with a focus on its installation process and
a comprehensive overview of its features. Identify and evaluate key components, tools, and functionalities
within the IDE to gain a deeper understanding of its capabilities.

Code::Blocks IDE:

Code::Blocks shown in Error! Reference source not found. is an open-
source integrated development environment (IDE) primarily used for C and
C++ programming. It is available on multiple platforms, including
Windows, Linux, and macOS.

Code::Blocks Features Overview:

8 Cross-Platform Support: Code::Blocks is available for Windows,

Linux, and macOS, making it accessible on a wide range of operating
systems. Figure 2-1 Code::Blocks Logo

8 Customizable Interface: You can customize the user interface to suit your preferences. This includes
the ability to change themes and layouts.

¥ Code Editor: The IDE provides a code editor with features like syntax highlighting, code folding, code
completion, and the ability to work with multiple source files simultaneously.

¥ Compiler Integration: Code::Blocks supports multiple C and C++ compilers, including GCC (GNU
Compiler Collection) and Microsoft Visual C++. You can configure the IDE to work with your preferred
compiler.

¥ Build and Debugging Tools: It offers built-in build and debugging tools. You can compile and run your
programs directly from the IDE. Debugging features include breakpoints, watch variables, call stack, and
a GUI-based debugger.

8 Project Management: You can manage your projects with ease using Code::Blocks. It supports various
project types, including console applications, GUI applications, and dynamic link libraries (DLLS).

¥ Code Templates: The IDE includes code templates and code snippets for C and C++ to help streamline
development and reduce typing.

8 Plugins and Extensions: Code::Blocks has a plugin architecture that allows you to extend its
functionality. There are various plugins available to enhance the IDE's features further.

8 Integrated Development Tools: It provides tools for version control, like Subversion, and integrated
development support for popular libraries and frameworks.

8 Resource Management: Code::Blocks allows you to manage resources like images, icons, and other
assets used in your projects.

¥ Auto-Completion: The IDE provides auto-completion and code suggestions, which can improve your
coding productivity.

8 Project Wizards: You can use project wizards to quickly set up new projects with predefined
configurations.

8 Multiple Compiler Support: As mentioned earlier, Code::Blocks supports multiple compilers. This

8

flexibility allows you to choose the best compiler for your needs.

¥ Multi-Language Support: While it is primarily used for C and C++ development, Code::Blocks also
supports other programming languages, making it a versatile IDE.

¥ Free and Open Source: Code::Blocks is open-source software, which means it is free to download, use,
and modify. It has an active community of developers, which can be helpful for finding support and
updates.

Code::Blocks Installation Guide

Download:
To download the IDE on Microsoft Windows, follow these steps. For other operating systems, please
download the compatible file.

1.
2.
3.

Open your preferred web browser and go to www.codeblocks.org/downloads.

Click on "Download the Binary Release."”

Download the Code::Blocks with Mingw setup file as shown in Figure 2-2. As of the time of writing
this text, the file is named " codeblocks-20.03mingw-setup.exe.”

Your installation is now complete, and you're all set to get started.

Code:Blocks # Downloacls / Binary releases

Binary releases

The IDE with all thé features you
need, having a consistent look,
feel and operation across
platforms.

s m o onmom
g¢88 348

Figure 2-2 Obtaining Code::Blocks Installation Package

Installation:

1.

The installation process is straightforward. Execute the previously downloaded executable file (or
the one obtained from the Computer Lab).

Running the setup file will initiate the installation wizard (Figure 2-3), which will seamlessly guide
you through the entire process.

Welcome to CodeBlocks Setup

Setup will guide you through the installation of CodeBlocks.

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Next to continue.

Cancel

Figure 2-3 Installation Process Wizard Guide

3. Click Next.

4. Read and accept the license terms to proceed with the installation of Code::Blocks (click 'l Agree'

in after reviewing the terms).

5. Once you have agreed to the terms, the installation wizard will prompt you to select the components
to install as shown in Figure 2-4 . Ensure that all components are checked, and then click 'Next' to

continue.

&P Code:Blocks Installatior
. Choose Components
§ ‘ Choose which features of CodeBlocks you want to install.

Check the components you want to install and uncheck the components you don't want to
install. Click Next to continue.

Select the type of install: Full: All plugins, all tools, just everything
Or, select the optional F Default install

components you wish to = 7 p

i #-[¥] Contrib Plugins

C::B CBP2Make

C::B Share Config
C::B Launcher
MinGW Compiler Suite

Description
Space required: 531.5 M8

< Back Next > Cancel

S

\

Choose Install Location
Choose the folder in which to install CodeBlocks.

Setup will install CodeBlocks in the following folder. To install in a different folder, dick Browse
and select another folder. Click Install to start the installation.

Destination Folder

C:\Program Files\CodeBlocks Browse...

Space required: 531.5MB
Space available: 50.3 GB

< Back Install Cancel

Figure 2-4 Components to install

Figure 2-5 Choose destination

6. Next, choose the installation location on your hard disk for Code::Blocks (Figure 2-5). Using the

default location is recommended.

7. After clicking the "Install” button, the installation process will begin.
8. Upon successful installation, a confirmation message will be displayed (Figure 2-7).

10

&7 Cod

ks Installation = h r e A : 3 1

' Installi
e . o Mote: After auto-detection, at least one compiler's master path is still empty and therefore invalid.
Please wait while CodeBlocks is being installed.

Inspect the list below and change the compiler's master path later in the compiler options.
Select you favourite default compiler here:

Create shortcut: C:\Users\Danishkhan\AppData\Roaming Microsoft\Windows\Start Menu\Prog Compiler Status
GNU GCC Compiler Detected

Extract: i386pe/ e
Extract: i386pe
Extract: i386pe|
Extract: i386pg o

g Do you want to run Code::Blocks now?
Extract: i386pe
Qutput folder: {
Qutput folder: {
Created uninstz Yes No
Qutput folder: &_____ = S Start Me...
Create shortcut: C:\Jsers'\DanishKhan\AppData'\Roaming\Microsoft\Windows\Start ...

de:Blocks Installation

Current default compiler: GNU GCC Compiler

lext Cance OK

J \ —- e — o= IJ

Figure 2-7 Installation Successful Figure 2-6 Compiler selection
9. Once the installation is complete, you can choose between two options: "Finish Installation™ or "Run
Code::Blocks."
10. You may be prompted to select compilers that are already installed on your PC.
11. Select "GNU GCC Compiler" from the list.

Running Code::Blocks:

1. Locate the Code::Blocks icon on your desktop or in your application menu, then double-click it to
launch the IDE.

AleuGFLLiwnn §DT LN YN
oo Lehamc (*he BT = ST IR - N o 1%
‘ The cown source. cruss gasior IOE
™
filwe
dhe Dey
=
& i
o
© 2004 - 2018, The Code. Biucks Team.
? CopCcuveras « A Cppthecciveras + messages % (7 Corope ® Lh0sbugger % [# Doylodss F! Forsan infa B fuClosed fles bot % 5 Thread search
[|
dufail g

Figure 2-8 Code::Blocks IDE
2. You can choose to set it as the default program for running C/C++ code (Figure 2-8).
3. Create a new empty file (use the shortcut Ctrl + Shift + N) as shown in Figure 2-9.

11

—
f - i Tha nnan crurea_senesniatines IDE —— 1na nnan cnurea o s —\
Projects Category: <All categories> g Projects Category: <All categories>
Build targets Build targets
- = < - =
Files = - 0] = Cancel Files h c= = Fes] F © Cancel
Custom ARM AVR Project Arduino Code:zBlo.. Console Custom C/C++ C/C++ Dsource Emptyfile Fortran Java source
User templates Project Project plugin application User templates header source source
L 1 Ak
= 8 46 =
D Direct/X Dynamic Empty FLTK 2 n
application project Link Library project praject
al =l awr
B 8 &8 =« &
Fortran DLL Fortran Fortran GLFW GLUT
application library project project
® & @ = Vs Viewas
GTK+ Irrlicht Java Kemnel Lightfeat..
project project application Mo project © Large icons O Large icons
a O
@ » 4 I & st st
TIP: Try right-dlicking an item TIP: Try right-clicking an item
1. Select a wizard type first on the left 1. Select a wizard type first on the left
2. Select a specific wizard from the main window (filter by categories if needed) 2. Select a specific wizard from the main window (filter by categories if needed)
3. Press Go 3. Press Go

Figure 2-9 Creating an Empty C++ File

4. Save the file with the name "Lab_02_Pgm_01.cpp."”
5. Be sure to save it in the correct format, which should be ".cpp.”

Creating Your First C++ Program:

1. Enter the following code into the blank file.

#include<iostream>
using namespace std;

int main() {

cout<<"Just one small step for coders. One giant leap for";

cout<<" programmers!”;

return 0;

}

2. After entering your code, navigate to "BUILD" and select "BUILD and RUN" (or simply press F9
for a shortcut).

“E:\Courses\Computer and Pr X =F ~

Just one small step for coders. One giant leap for programmers!
Process returned 0 (0x0) execution time : 1.103 s
Press any key to continue.

Figure 2-10 Output: Lab_02_Pgm_01.cpp

3. If your program compiles successfully, it will execute (Output is shown in Figure 2-10). In case of
12

any compilation errors, you will receive an error message.

Playing Your First C++ Game:

1. Begin by double-clicking the "Lab02_GuessingGame.exe" file, which has already been provided to
you.
2. This is a two-player game, where one player inputs a number, and the other player's task is to guess
it.
3. Simply follow the in-game instructions provided (Figure 2-11).
4. Don't worry if you don't fully grasp the underlying code at this stage. You'll have the opportunity to
code this game in future lab sessions.
[Ny
@ "E\Courses\Computer and Pr X G (82
Player 2: Please avoid looking at the screen.
Player 1: Enter the number to be guessed by Player 2 : |
"ENCourses\Computer and Pr X sl "E:\Courses\Computer and Pr X + | v
Player 2: Make your guess. Press 0 to concede defeat : 7 Player 2: Make your guess. Prass @/ta corceds detaat & il
Number is high. Please try again.
Player 2: Make your guess. Press 0 to concede defeat : 3 Number is low. Please try again.
NisiBaz da Tow. Blisse try agadn. Player 2: Make your guess. Press 0 to concede defeat : 6
Player 2: Make your guess. Press 0 to concede defeat : 5
Number is high. Please try again.
Player 2: Make your guess. Press @ to concede defeat : ©
*kkkkkCongratulations Player 2! ! @&kkkkikkkn AEEn
Unfortunately, Player 2, you didn't win this time. %%k
This is the correct number. Press any key to continue . . .
You made 3 attempt(s) to guess it correctly.
Press any key to continue . . .
\ J
Figure 2-11 Snippets from the Guessing Game Output
Exercise:

QL. Given the code snippets below, identify and correct the syntax errors to make each code snippet compile
and run successfully. Explain the errors you found and the corrections you made.

SNo

Incorrect Code Correct Code Explanation

(i)

#include <iostream>
using namespace std;
int main() {
cout << "Hello, World!"
return 0;

}

(iii)

#include <iostrm>

using namespace std;

int main() {
cout << "Hello, World!";
return 0;

}

13

#include <iostream>
using namespace std;
. int add(int a, int b) {

(iv)
return a + b;

}

#include <iostream>
using namespace std;

int Main() {

(V) cout << "Hello, World!";
return 0;

}

#include <iostream>
using namespace std;

int main() {

(vi) cout << "Hello, World!";
return (0;

}

#include <iostream>
using namespace std;
int main() {
cout >> "Hello, World!";
return 0;

}

Q2. Write a C++ program to display the following information:

Full Name: [Your Full Name]

Seat Number: [Your Seat Number]

Favorite Teacher: [Your Favorite Teacher's Name]

Code:

Laboratory Session No.

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-105 Computer and Programming

Date:

Software Use Rubric

Level of Attainment

results/outputs.

interpretation.

interpretation.

interpretation.

Criterion Below Average | Average Good Very Good Excellent
1) 2 3 4) (©)
|dentification of Rarely Occasionally Able to
software menu (syntax, . . oo X . X . Perfectly able to
Can’t identify identifies identifies identify . .
components, identify software
software menus. software software software
commandes, tools, menus Menus menus menus.
layout etc.) ' ' '
Skills to use software Can’t use Rarely uses Occasionally Often uses Efficiently uses
(schematic, syntax, software (syntax,
software software uses software software
commands, tools, efficient! efficientl efficientl efficientl commands,
layout) efficiently y y y y tools, layout)
Adherence to safety Rarel
procedures and , y Occasionally | Often handles
handli f equi t Doesn’t handle handles handles equipment Handles
andling ot equipmen equipment with | equipment . . -quipme equipment with
(computing unit, . . . equipment with | with required .
h . required care and | with required . required care and
peripheral devices, and safet care and required care care and safet
other equipment in Y safet and safety. safety. Y
lab) Y-
Ability to troubleshoot Not able to Rarely able to Occasionally Often able to Fully able to
software errors able to
(detection and troubleshoot the | troubleshoot troubleshoot troubleshoot | troubleshoot the
. errors the errors the errors errors
debugging) the errors
Analvsis and Not able to Rarely able to atc))lzct?)smer;?(l)lrym Often able to | Perfectly able
. YSIS ¢ analyze and perform the Perto perform the | to perform the
interpretation of . . the analysis . .
interpret analysis and analysis and analysis and
results/outputs and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

15

Lab Session 3

Objective:
To examine the fundamental components of the C++ language, including data types and input-output
functions, to identify their characteristics, distinctions, and how they contribute to program functionality.

Theory:
This lab explores the fundamental elements that serve as the building blocks of C++ programming. These

crucial components cover the C++ character set, identifiers, keywords, data types, constants, variables,
expressions, statements, and escape sequences. Within the scope of this lab, you will study the following
key topics:

Basic data types in C++

Declaring and using variables

Comments in a C++ program

Printing variable values with cout

Interactive computing with cin

Escape sequences.

This comprehensive exploration equips you with the foundational knowledge necessary to excel in C++
programming, providing the theoretical underpinning for practical application and problem-solving in this
versatile language.

Qe

Basic Data Types in C++:
In C++, basic data types are fundamental building blocks used to define and store different types of data in

a program. Some of the commonly used basic data types in C++ are shown in Figure 3-1.

Basic Data
L Types

Numeric Character String Boolean

—— =

-

Float

{ Integers

\ 4
Figure 3-1 Basic Data Types in C++
© Numeric: Numeric data includes a wide range of numbers, encompassing both integers (whole
numbers) and floating-point values (numbers with decimal points). Below are examples of numeric
data:
e Integer: These are whole numbers, such as 5, -10, 0, and 100.
e Floating-Point: These are numbers with decimal points, like 3.14, -0.5, 2.71828, and 100.0.

e Double: A higher-precision floating-point type, e.g., 3.14159265359, -0.0001, and
16

123.4567809.
e Long: Used for larger integer values, e.g., 1,000,000, -987654321.
e Short: Used for smaller integer values, e.g., 42, -32768, 100.
@ Character: Character data comprises alphanumeric characters and special symbols, each enclosed
within single quotes. Some examples of character data are as follows:
e 'A" An uppercase letter 'A’.
e '3 The numeric digit '3".
e '$": The dollar sign symbol.

e 'I'' An exclamation mark.
e '" Aspace character.
@ String: It consists of text values enclosed within double quotes. Examples of string data are given
below:

"Hello, World!": A simple greeting.

"12345": A string representation of numeric digits.

"OpenAl™: A string representing a company name.

"C++ Programming™: A string containing spaces and multiple characters.
e "Special characters: @#$%": A string with various symbols.

@& Boolean: Boolean data consists of two values: true and false.

Demonstrating Data Type Usage in C++

#include <iostream>

using namespace std;

int main() {
intintegerVar = 42; floatfloatVar = 3.14;
double doubleVar = 2.71828; char charVar ="'A";

bool boolVar = true; string stringVar = "Hello, World!";

cout << "Integer: " << integerVar << ", Float: " << floatVar << ", Double: " << doubleVar
<< ", Character: " << charVar << ", Boolean: " << boolVar << ", String: " << stringVar;
return 0;}

Variable Declaration and Usage in C++:

In C++, a variable is a fundamental programming concept used to store and manipulate data. It is essentially
a named storage location in the computer's memory where programmer can assign and retrieve values during
program execution.

Variable declaration is the process of specifying the variable's name and data type, which determines the
kind of data it can store. For example, one can declare an integer variable named "age" by writing: int age;
This informs the compiler to set aside memory for an integer and associate it with the name "age" for later
use in the program. Variable declarations are crucial for managing data in C++ programs, and they set the
foundation for efficient memory allocation and data manipulation. Table 3-1 displays the keywords and

17

memory requirements for various data types.

Table 3-1 Data Types, Their Keywords, and Memory Allocation

Data Type Keyword Bytes Allocation
Integer int 4
Float float 4
Character char 1
Boolean bool 1
Double double 8
String string varies

The following code can be utilized to ascertain the memory requirements of different data types.

#include <iostream>
using namespace std;
int main() {

cout << "Size of int: " << sizeof(int) << " bytes" << endl;
cout << "Size of float: " << sizeof(float) << " bytes" << endl;

cout << "Size of double: " << sizeof(double) << " bytes" << endl;

cout << "Size of char: " << sizeof(char) << " bytes" << end];

cout << "Size of bool: " << sizeof(bool) << " bytes" << endl;

cout << "Size of long: " << sizeof(long) << " bytes" << endl;

cout << "Size of short: " << sizeof(short) << " bytes" << endl; return 0;}

Rules for Variable Naming:
@ Variable names must start with a letter or an underscore ().
@ They may contain letters, numbers, and the underscore character only; no other special characters
are allowed.
@ Uppercase and lowercase letters are treated as distinct in variable names.
@ A variable name should not be a reserved keyword.
@ It should not have the same name as a built-in or user-defined function.

Input and Qutput Functions (cout and cin) in C++

C++ provides two primary I/O functions for handling output and input: cout for output and cin for input.
These are part of the C++ Standard Library and are associated with the iostream library.

#include <iostream>
using namespace std;
int main() {
int age;
cout << "Enter your age:"; cin >> age;

cout << "You entered: " << age << "years." << endl; return 0;}

Comments

Comments are used solely to enhance program readability and properly document the program. Comment
statements will not be compiled. Comments begin with /* and end with */, with text placed in between
them. For single-line comments, // is used.

Example:
/I This is a single-line comment. It is used for brief notes or explanations.
[* This is a multi-line comment.

It provides detailed explanations of code blocks. */

Escape Sequences:

Escape sequences are special character sequences used in string literals and character literals to represent
characters that are not easily typable or visible, as well as to insert formatting characters. Escape sequences
start with a backslash (\) followed by one or more characters, and they have specific meanings. Explanation
of commonly used escape sequences in C++ is given in Table 3-2.

Table 3-2 Common Escape Sequences in C++

Sequence Purpose

Represents a newline character. When printed or displayed, it moves the
cursor to the beginning of the next line.

Carriage return: Represents a carriage return character. It moves the cursor to the beginning of

Newline: \n

\r the line,
Horizontal Tab: Represents a horizontal tab character. It's used for creating horizontal spacing
\t or indentation.

Represents a vertical tab character. It's less commonly used and may not have
a visible effect in many environments.

Produces audible or visual alert. Its behavior can vary depending on the
platform or environment.

Represents a backspace character. It moves the cursor one position to the left
but doesn't erase the character.

Represents a literal backslash character. It's used when you want to include a
backslash in a string or character literal.

Represents a single quotation mark. It's used to include single quotes within a
character literal.

Double Quotes: Represents a double quotation mark. This is used to include double quotes
\” within a string literal.

Null Character:
\0

Vertical Tab: \v

Alert Beep: \a

Backspace: \b

Backslash: \\

Single Quote: \

Represents the null character, which has a numeric value of 0.

Operators:
Operators are symbols that represent operations to be performed on operands. Operands can be variables,

constants, expressions, or values. As illustrated in Figure 3-2., C++ provides a wide range of operators for
various types of operations, including arithmetic, relational, logical, bitwise, assignment, and more.

19

Type

unary —>
Operator

Unary Operator

~ RS

<, <=, >=, ==, I=

&&, | |,!

Arithmetric Operator
Relational Operator

Binary <
Operator

Logical Operator

Bitwise Operator

-~ A
&, |, <<, ==, ~,

g =yl *=: /=, Y%=

Ternary a

Operator

Assignment Operator

Ternary or Conditional
Operator

Figure 3-2 Operators in C++

Usage in C++:

#include <iostream>
using namespace std;
int main() {

// Arithmetic operators

inta=10,b =5;

cout << "Arithmetic Operators:" << endl;
cout<<"a-b="<<a-b<<endl];
cout<<"a/b="<<a/b<<endl

// Relational operators

cout << "\nRelational Operators:" << endl;
cout<<"a!=b:" << (a!=b) << end];

cout << "a <b: " << (a<b) << end];

cout << "a<=bh:" << (a<=Db) << endl];

// Logical operators

bool x = true, y = false;
cout << "\nLogical Operators:" << endl;
cout << "x||y: " << (x || y) << endl;

// Bitwise operators

intm=5,n=3;

cout << "\nBitwise Operators:" << endl;
cout<<"m | n =" << (m | n) << endl;
cout << "~m =" << ~m << endl;

// Assignment operators
int result = 0; result += 10;

cout << "\nAssignment Operators:" << end];

cout << "result += 10: " << result << end];

return 0; }

cout<<"a+b="<<a+b<<end]
cout<<"a*b="<<a*b<<endl]
cout<<"a%b="<<a%b<<endl;

cout <<"a==b:" << (a==b) << end];
cout <<"a>b: " << (a>Db) << endl];
cout <<"a>=b:" << (a>=b) << end];

cout << "X && y: " << (x && y) << end];
cout << "!x: " << Ix << endl;

cout << "m & n =" << (m & n) << end];
cout<<"m " n =" << (m " n) << endl;

Operators Precedence and Associativity:

Operator precedence determines the order in which operators are evaluated within an expression. Operators
with higher precedence are evaluated before operators with lower precedence. When writing an expression,
it's essential to know which operator takes precedence to ensure that the expression is evaluated as intended.
The precedence of common operators is given in Table 3-3.

Example:

In C++, multiplication (*) has higher precedence than addition (+). So, in the expression 3 + 5 * 2, the
multiplication is performed first because * has higher precedence, resulting in 3 + 10, which evaluates to
13.

Operator associativity determines the order of evaluation when operators with the same precedence appear
in an expression. It specifies whether operators are evaluated from left to right (left-associative) or right to
left (right-associative).

Example:

Addition (+) is left-associative, which means that in the expression 3 + 5 + 2, the leftmost + is evaluated
first, followed by the next leftmost +, resulting in (3 + 5) + 2, which equals to 10.

Table 3-3 Precedence of Arithmetic, Relational, Logical, and Assignment Operators

Operators Operations Precedence
Evaluated first. If parentheses are nested, the innermost
0 Parentheses L)
expression is evaluated first.
. [o Multiplication, Evaluated second. If there are multiple evaluations, they
Y Division, Modulus are performed from left to right.
;- Sften, i Evaluat_ed last. If there are several, they are evaluated from
left to right.
<, >, <=, >z, . . Comparison or relational operators have lower precedence
o Relational Operation) X
==, I= than arithmetic operators.
&& || Logical Operation Logical operators have lower precedence than comparison
operators.
= 4= = Assignment Operation Assignment operators have lower precedence than most
other operators.
Exercises:

Q1. Write the output of the following statements and provide a brief explanation of how each statement
works.

Sno. Statements Output Explanation

(i) | cout<<"Hello," << "world!";

21

(if) | cout << "This is a backslash: \\";

(iii) cout << “l am a computer geek, \rits a
\blie.”

(iv) cout
<<"a"<<"\t"<<"b"<<"\t"<<"c"<<endl;

(V) | cout << "Line 1\nLine 2\nLine 3";
intx=>5;

| inty=10;

(Vi) | cout << "The sum of " <<x <<"and"

<<y<<"is"<<x+y;

Q2. Create a C++ program that asks the user to enter their name and age using cin. Then, display a greeting
message using cout. Ensure the program handles different data types for user input, such as strings and

integers.

22

Q3. Write a C++ program that calculates the area of a rectangle. Ask the user for the length and width of
the rectangle, perform the calculation, and display the result using cout. Use appropriate arithmetic and
assignment operators for this task.

Q4. Write a C++ program that calculates a person's Body Mass Index (BMI). The program should use cin
to obtain the necessary inputs, calculate the BMI using proper operator precedence, and display the result
using cout. The BMI is calculated using the following formula:

Weighs in Kilograms

BMI =
Height in Meters?

23

Laboratory Session No.

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-105 Computer and Programming

Date:

Software Use Rubric

Level of Attainment

results/outputs.

interpretation.

interpretation.

interpretation.

Criterion Below Average | Average Good Very Good Excellent
1) 2 3 4) (©)
|dentification of Rarely Occasionally Able to
software menu (syntax, . . oo X . X . Perfectly able to
Can’t identify identifies identifies identify . .
components, identify software
software menus. software software software
commandes, tools, menus Menus menus menus.
layout etc.) ' ' '
Skills to use software Can’t use Rarely uses Occasionally Often uses Efficiently uses
(schematic, syntax, software (syntax,
software software uses software software
commands, tools, efficient! efficientl efficientl efficientl commands,
layout) efficiently y y y y tools, layout)
Adherence to safety Rarel
procedures and , y Occasionally | Often handles
handli f equi t Doesn’t handle handles handles equipment Handles
andling ot equipmen equipment with | equipment . . -quipme equipment with
(computing unit, . . . equipment with | with required .
h . required care and | with required . required care and
peripheral devices, and safet care and required care care and safet
other equipment in Y safet and safety. safety. Y
lab) Y-
Ability to troubleshoot Not able to Rarely able to Occasionally Often able to Fully able to
software errors able to
(detection and troubleshoot the | troubleshoot troubleshoot troubleshoot | troubleshoot the
. errors the errors the errors errors
debugging) the errors
Analvsis and Not able to Rarely able to atc))lzct?)smer;?(l)lrym Often able to | Perfectly able
. YSIS ¢ analyze and perform the Perto perform the | to perform the
interpretation of . . the analysis . .
interpret analysis and analysis and analysis and
results/outputs and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

24

Lab Session 4

Objective:

To synthesize the principles of decision making in C++ using if and nested if statements, analyze complex
scenarios, and propose logical solutions, demonstrating a higher-level understanding of control flow and
problem-solving.

Theory:
Decision making in C++ is a fundamental concept that empowers programmers to take control of the

program's execution flow. In our previous laboratory sessions, we've primarily explored programs that
execute sequentially from start to finish. However, in real-world scenarios, it is often essential to introduce
conditional logic, enabling specific code segments to execute only when certain conditions are met. This
capability to direct program flow and make decisions on code execution is invaluable in programming.

In programming, decision making revolves around evaluating expressions, whether logical or relational.
The outcome of this evaluation falls into one of two categories: TRUE or FALSE. When the result is TRUE,
a specified piece of code is executed, allowing the program to perform a specific action. In the case of a
FALSE outcome, there are two potential avenues to explore. The program can either execute a different
piece of code than that designated for the TRUE case or follow an alternative branch.

Operators for Decision Making
In C++, operators for decision making are essential for evaluating conditions and controlling the flow of a

program based on those conditions. Decision-making operators are also known as relational (Table 4-1),
logical (

Table 4-2) and ternary (

Table 4-3) operators. They are fundamental tools for comparing values, checking for equality, and

combining conditions to ascertain whether a specific condition evaluates to true or false.
Table 4-1 Relational Operators for decision making in C++

Operators Description Example

== Equal to 10 ==9 s False

I= Not equal to 10 !1=9is True

< Less than 10 <9is False

> Greater than 10> 9is Ture

<= Less than or equal to 10 <=9 s False

>= Greater than or equal to 10>=9is True

Code 4-01:

#include <iostream>

using namespace std;

int main() {
inta=42,b =19; float radius = 5.0, circumference = 31.4;
string city = "Paris", country = "France";

cout << "Is a greater than b? " << (a > b) << " (1=true, 0=false)" << endl;

cout << "Is the radius equal to the circumference?"<< (radius == circumference)<< endl;
cout << "Is the city the same as the country? " << (city == country) << end];

cout << "Is a equal to b? " << (a==b) << endl;

return 0:}

@ Synthesize, analyze, and explain your understanding of the Code 4-01.

Table 4-2 Logical Operators for decision making in C++

Operators C++ Symbol Example
A B A&&B AlB I(A&&B)
AND && 8 2 8 2 i
OR H i R — i :
| |
or | e
Code 4-02:

#include <iostream>
using namespace std;

int main() {
bool p = true, q = true, r = false, result;

result = (p || q);

cout << "p AND q =" << (p && q) << end];
cout << "p OR q =" << result << endl;
cout << "NOT p =" << (!p) << end];

cout << "NOT q =" << (!q) << end];

cout << "NOT r =" << (Ir) << endl;

return 0;

@ Synthesize, analyze, and explain your understanding of the Code 4-02.

Table 4-3 Ternary Operator for decision making in C++

Operators Description Example
?. Conditional Operator intmax=(X>y)?x:y;
Code 4-03:

#include <iostream>
using namespace std;
int main() {

int x,y; cout<<”Enter Values of x and y: “; cin>>x>>y;
intresult=(x>y)?x:y;

cout << "The greater of x and y is: " << result << end];
return 0;}

@ Synthesize, analyze, and explain your understanding of the Code 4-03.

27

The if() statement in C++

The 'if' statement is a powerful construct that forms the cornerstone of
decision-making in C++. It serves as a gatekeeper, determining whether a
program should enter a particular section of code based on the truth or
falsehood of a given condition as shown in Figure 4-1. Among its diverse
applications, one of the most notable functions of the 'if' statement is
enabling programs to respond to user input. For instance, an 'if' statement
can assess a user-entered password, granting or denying access to the
program based on the evaluation of the condition.

If Condition

True False

Syntax:

if (condition) {

Statement just

// code to execute if condition is true below i
} l
The condition can be any Boolean expression. If the condition evaluates

to true, then the code inside the curly braces is executed. If the condition Figure 4-1 Flowchart of an IF Statement
evaluates to false, then the code inside the curly braces is skipped.

Code 4-04:

#include <iostream>
using namespace std;

int main() {
intx; cout<<”Enterx:“; cin>>x;

if (x>10) {
cout << "x is greater than 10" << endl;

}

return 0;

}

@ Synthesize, analyze, and explain your understanding of the Code 4-04.

28

Nested if() statements in C++

A nested IF statement in C++ is a programming construct that involves placing an IF statement within
another IF statement. This allows for more complex decision-making processes, enabling the program to
handle multiple conditions simultaneously. The nested IF structure typically involves checking for multiple
conditions and executing specific code blocks based on the outcomes of these checks.

Syntax:

if (condition1)

{

// Code to execute if condition1 is true

if (condition2)
{//Code to execute if condition2 and condition 1 is true }

}

Exercises:

QL. Develop a C++ program to determine whether an inputted alphabet is uppercase or lowercase. (Hint:
The ASCII code for Ais 65.)

Q2. Write a C++ program that determines whether an inputted alphabet is a vowel or a consonant. The
program should handle both uppercase and lowercase letters.

29

Laboratory Session No.

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL-105 Computer and Programming

Date:

Software Use Rubric

Level of Attainment

Criterion Below Average Average Good Very Good Excellent
1) (2) 3) 4) (5)
|dentification of Rarely Occasionally Able to
software menu (syntax, e L S e Perfectly able to
Can’t identify identifies identifies identify . .
components, identify software
software menus. software software software
commands, tools, menus.
menus. menus. menus.
layout etc.)
Skills to use software Can’t use Rarely uses | Occasionally Often uses Efficiently uses
(schematic, syntax, software (syntax,
software software uses software software
commands, tools, efficientl efficientl efficientl efficientl commands,
layout) efficiently y y y y tools, layout)
Adherence to safety
Rarely .
procedures and Doesn’t handle handles Occasionally | Often handles Handles
handling of equipment X . . handles equipment . .
. . equipment with | equipment equipment with
(computing unit, . : : equipment with | with required .
: . required care and | with required . required care and
peripheral devices, and required care care and
. . safety. care and safety.
other equipment in and safety. safety.
safety.
lab)
Ability to troubleshoot Not able to Rarely able to Occasionally Often able to Fully able to
software errors able to
. troubleshoot the | troubleshoot troubleshoot | troubleshoot the
(detection and troubleshoot
. errors the errors the errors errors
debugging) the errors
. Not able to Rarely able to Occasionally Often able to | Perfectly able
Analysis and able to perform
. . analyze and perform the . perform the | to perform the
interpretation of . . the analysis . .
interpret analysis and analysis and analysis and
results/outputs . . and
results/outputs. | interpretation. | . . interpretation. | interpretation.
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

30

Lab Session 5

Objective:

To analyze and evaluate the functioning of conditional statements, such as if-else, else-if, nested if-else,
and Switch-Case within the context of C++ programming, and to discern their respective applications and
implications in program flow control.

Theory:
The if-else statement is a control structure that enables you to make decisions in your program based on the

evaluation of a condition. It comprises two blocks of code: one block is executed if the condition is true,
and the other block is executed if the condition is false, as illustrated in Figure 5-1. In contrast, as indicated
in Table 5-1, the if statement alone allows the execution of a single block of code only if the specified
condition evaluates to true.

If Condition

True False

If Body Else Body

v

Statement just
below if

Figure 5-1 Flowchart of an if-else statement

Syntax

if (condition) {
// Code to be executed if the condition is true

} else {
// Code to be executed if the condition is false

}

Table 5-1 Comparison of if and if-else Statements

If statement If-else statement
Executes a block of code only if the condition is Ensures that one of the specified blocks of code
true. will be executed.

Provides an alternative block of code to be

No alternative action is specified for the false case. executed if the condition is false.

31

Code 5-01:

#include <iostream>
using namespace std;
int main() {
intx; cout<<”Enter x: “; cin>>x;
// if-else statement

if(x>5){

cout << "x is greater than 5." << end]l; }
else {

cout << "x is not greater than 5." << endl; }
return 0;}

@ Synthesize, analyze, and explain your understanding of the Code 5-01.

The if-else if statement:

In C++, the if-else if (often written as if-elseif) statement is an extension of the if and if-else statements,
providing a way to handle multiple conditions in a more structured manner. The if-elseif statement allows
you to evaluate multiple conditions sequentially. If the first if condition is true, the corresponding block of
code is executed, and the rest of the conditions are skipped. If the first if condition is false, the program
checks the next elseif condition. This process continues until a true condition is found, and its associated
block of code is executed.

Syntax

if (condition1) {
// Code to be executed if condition1 is true
} else if (condition2) {

// Code to be executed if condition2 is true
}else {
// Code to be executed if none of the conditions are true

}

32

Code 5-02:

#include <iostream>
using namespace std;
int main() {
char operation; double num1, num?2;
// Get user input
cout << "Enter an operation (+, -, *, /): "; cin >> operation;
cout << "Enter two numbers: "; cin >> num1 >> num?2;
// Perform calculations based on the user's choice
if (operation =="+") {
cout << numl <<" +" <<num2 << " =" << num1 + num2 << endl; }
else if (operation =="-") {
cout << numl << " -"<<num2 << " =" << num1 - num2 << endl; }

else if (operation == "*') {
cout << numl << " *" <<num2 << " =" << num1 * num2 << endl; }

else if (operation =="/") {
// Check for division by zero
if (num2 !'=0) {
cout << numl <<" /" <<num2 << " =" << num1 / num2 << endl; }
else {
cout << "Error: Division by zero is not allowed." << endl; }
}else{
cout << "Invalid operation. Please enter +, -, *, or /." << endl; }
return 0; }

@ Synthesize, analyze, and explain your understanding of the Code 5-02.

33

Nested if-else if statement:

A nested if-else if structure involves placing one or more if-else if statements inside the body of another if
or else block. This arrangement allows for the evaluation of multiple conditions in a hierarchical manner,
with each level of the nested structure introducing additional conditions to check.

Execution:
1. Evaluation of Outer Condition:
@ The outermost “if” condition is evaluated first.
@ If it is true, the corresponding block of code is executed.
@ If it is false, the control may move to the else if conditions (if any) associated with the outer
“if”.
2. Evaluation of Inner Conditions:
@ If an “else if” condition is true, the corresponding block of code is executed, and the rest of the
inner “else if” conditions are skipped.
@ If none of the “else if” conditions are true, the “else” block (if present) is executed.
3. Nested Layers:
@ Additional levels of nesting can be introduced by placing 'if-else if' structures within the blocks
of outer 'if' or 'else’ statements, and the program will execute accordingly.

Code 5-03:

#include <iostream>
using namespace std;

int main() {
intx; cout<<”Enter x: “; cin>>x;
if(x>0){
cout << "x is positive." << endl;
if(x%2==0){
cout << "xis even." << endl; }

else {
cout << "xis odd." <<endl; }

}elseif (x<0) {
cout << "x is negative." << endl; }

else
cout << "x is zero." << end]l;
return 0;

}

34

@ Synthesize, analyze, and explain your understanding of the Code 5-03.

Switch-Case statement:

The switch-case statement is a control flow statement that allows a program to execute different blocks of
code based on the value of an expression. It is a convenient way to write a series of if-else statements when
you have a single variable whose value needs to be tested against multiple possible values.

Syntax

switch (expression)
{
case valuel:
// code to be executed if expression == valuel
break;

case value2:

// code to be executed if expression == value2
break;

// more cases can be added as needed

default:

// code to be executed if expression doesn't match any case

35

Code 5-04:

#include <iostream>
using namespace std;
int main() {
char unit;
cout << "Select voltage unit: (V)olts, (m)illivolts, (u)microvolts: "; cin >> unit;
switch (unit) {
case 'V'":
case 'v'":
cout << "Voltage unit selected: Volts" << end]l; break;

case 'M":
case 'm'":
cout << "Voltage unit selected: Millivolts" << end]l; break;

case 'U":
case 'u":

cout << "Voltage unit selected: Microvolts" << endl; break;
default:

cout << "Invalid selection!" << endl; }
return 0;}

@ Synthesize, analyze, and explain your understanding of the Code 5-04.

Exercises:

Q1. Write a C++ program that takes the input voltage (V) from a user and determines whether it is within
the acceptable range for a digital logic HIGH signal. If the voltage is greater than or equal to 2.0 volts, print
"Logic HIGH." Otherwise, print "Logic LOW." (Method: if-else)

36

Q2. Create a C++ program for a simple temperature control system using if-else if statements. Take the
temperature input from a sensor, and based on the temperature range, provide feedback on the heating status.
If the temperature is below 20 degrees Celsius, print "Heating OFF." If it's between 20 and 25 degrees
Celsius, print "Heating ON, maintaining temperature.” If it's above 25 degrees Celsius, print "Heating ON,
cooling down."

Q3. Develop a C++ program to analyze a digital signal using nested if-elseif statements. Take input for
signal frequency and duty cycle. Based on the values, classify the signal as follows:
@ If frequency is less than 1 kHz, check duty cycle:
e If duty cycle is less than 50%, print "Low-frequency, low-duty cycle signal."”
e If duty cycle is equal to or greater than 50%, print "Low-frequency, high-duty cycle signal."
@ If frequency is 1 kHz or greater, check duty cycle:
e [f duty cycle is less than 50%, print "High-frequency, low-duty cycle signal.”
e Ifduty cycle is equal to or greater than 50%, print "High-frequency, high-duty cycle signal."

37

Q4. You're tasked with designing a control system for a robotic arm with dynamic movement options based
on user input. The choices include circular, square, and rectangular trajectories. Implement a switch-case
structure to handle trajectory selection efficiently. For circular movement, prompt the user for the radius to
calculate the area. In the case of a square trajectory, request the side length for area calculation. For a
rectangular trajectory, collect both length and width inputs to calculate the corresponding area.

38

Laboratory Session No.

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-105 Computer and Programming

Date:

Software Use Rubric

Level of Attainment

results/outputs.

interpretation.

interpretation.

interpretation.

Criterion Below Average | Average Good Very Good Excellent
1) 2 3 4) (©)
|dentification of Rarely Occasionally Able to
software menu (syntax, . . oo X . X . Perfectly able to
Can’t identify identifies identifies identify . .
components, identify software
software menus. software software software
commandes, tools, menus Menus menus menus.
layout etc.) ' ' '
Skills to use software Can’t use Rarely uses Occasionally Often uses Efficiently uses
(schematic, syntax, software (syntax,
software software uses software software
commands, tools, efficient! efficientl efficientl efficientl commands,
layout) efficiently y y y y tools, layout)
Adherence to safety Rarel
procedures and , y Occasionally | Often handles
handli f equi t Doesn’t handle handles handles equipment Handles
andling ot equipmen equipment with | equipment . . -quipme equipment with
(computing unit, . . . equipment with | with required .
h . required care and | with required . required care and
peripheral devices, and safet care and required care care and safet
other equipment in Y safet and safety. safety. Y
lab) Y-
Ability to troubleshoot Not able to Rarely able to Occasionally Often able to Fully able to
software errors able to
(detection and troubleshoot the | troubleshoot troubleshoot troubleshoot | troubleshoot the
. errors the errors the errors errors
debugging) the errors
Analvsis and Not able to Rarely able to atc))lzct?)smer;?(l)lrym Often able to | Perfectly able
. YSIS ¢ analyze and perform the Perto perform the | to perform the
interpretation of . . the analysis . .
interpret analysis and analysis and analysis and
results/outputs and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

39

Lab Session 6

Objective:

To cultivate a comprehensive understanding of C++ loops by employing for loops and nested for loops in
diverse scenarios and demonstrate proficiency in basic and advanced operations, comprehend multi-
dimensional data processing, generate dynamic patterns, and optimize loop performance for enhanced code
efficiency.

Theory:
In C++, loops are control structures used for executing a block of code repeatedly based on a specified

condition. C++ has three main types of loops: the for loop, the while loop, and the do-while loop. These
loop structures are fundamental in programming for handling repetitive tasks and iterating through data
structures. It's important to define the loop conditions correctly to achieve the desired behavior and to
prevent unintended issues, such as infinite loops.

for loop:
The for loop is a control flow statement designed to repeatedly execute a block of code for a specific number

of iterations as shown in Figure 6-1 . It is particularly useful in situations where the number of iterations is

known beforehand.

False/not-satisfied

True/Satisfied
* L’ End of Loop

For Loop Body

I

_ Increment /
Decrement

Figure 6-1 Sequential Flow Structure Illustrating the Iterative Process of a C++ for Loop

Syntax

for (initialization; condition; update) {

// code to be executed

}

40

Code 6-01:

#include <iostream>
using namespace std;

int main() {
intsum =0; //Initialize a variable to store the sum
// Use a for loop to calculate the sum of the first 5 natural numbers

for (inti=1;i<=5; ++i) {
sum +=i; // Add the current number to the sum
}
// Display the result
cout << "The sum of the first 5 natural numbers is: " << sum << endl;
return 0; }

@ Synthesize, analyze, and explain your understanding of the Code 6-01.

Nested For Loop:

A nested for loop is a loop structure placed inside another for loop. This implies that there is a loop inside
the body of another loop, and the inner for loop is entirely contained within the body of the outer for loop.
The inner loop will be executed multiple times for each iteration of the outer loop. Nested for loops are
commonly employed for tasks involving 2D arrays, matrix operations, and pattern generation. Each iteration
of the outer loop triggers a series of iterations of the inner loop, enabling more complex control flow and
handling of repetitive tasks.

41

Syntax

for (initialization; condition; update) {
// Outer loop body

for (inner initialization; inner condition; inner update) {
// Inner loop body

}
}

Code 6-02:

#include <iostream>
Using namespace std;
int main() {
for (inti=0;i<5; ++i) { // Outer loop: controls rows

for (intj=0;j<5; ++j) { // Inner loop: controls columns
cout << "*";

}

cout << endl; // Move to the next line after each row

}

return 0; }

@ Synthesize, analyze, and explain your understanding of the Code 6-02.

42

Code 6-03:

#include <iostream>
using namespace std;
int main() {
for (inti=1;i<=5; ++i) {
for (intj=1;j<=5; ++j) {

cout <<i*j<<"\t";

}

cout << "\n";

}

return 0; }

@ Synthesize, analyze, and explain your understanding of the Code 6-03.

43

Exercises:

QL. Design a C++ program that calculates the total resistance of a series resistor network using for-loop.
The user should be prompted to enter the number of resistors in the network and their individual resistance
values. The program should then compute and display the total resistance of the network.

Q2. Assume you are tasked with designing the real-time clock interface for an embedded system using a
microcontroller. Create a C++ program that simulates the behavior of a digital clock. The clock should
display hours, minutes, and seconds and simulate real-time updates. Use the windows.h header for a one-
second delay between each iteration.
Requirements:

e Implement a real-time clock interface with hours (24-hour format), minutes, and seconds.

e Utilize the windows.h header for a one-second delay between each clock update.

e Ensure that the displayed time is formatted as HH:MM:SS. (You may use setfill() and setw())

e Simulate the clock for a specific duration input by the user in seconds.

Q3. In the field of Electronic Engineering, designing traffic signal controllers is a critical aspect of traffic
management systems. Your task is to create a C++ program that simulates a basic traffic signal controller.
This simulation will help in understanding the timing and coordination of signal phases.

Write a C++ program that simulates a traffic signal with three phases: Red, Yellow, and Green. The program
should take two inputs:

e The total number of simulation cycles to run.

e The duration (in seconds) for each phase of the traffic signal.
e Utilize the Sleep function from windows.h for introducing delays in each phase.

44

Laboratory Session No.

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-105 Computer and Programming

Date:

Software Use Rubric

Level of Attainment

results/outputs.

interpretation.

interpretation.

interpretation.

Criterion Below Average | Average Good Very Good Excellent
1) 2 3 4) (©)
|dentification of Rarely Occasionally Able to
software menu (syntax, . . oo X . X . Perfectly able to
Can’t identify identifies identifies identify . .
components, identify software
software menus. software software software
commandes, tools, menus Menus menus menus.
layout etc.) ' ' '
Skills to use software Can’t use Rarely uses Occasionally Often uses Efficiently uses
(schematic, syntax, software (syntax,
software software uses software software
commands, tools, efficient! efficientl efficientl efficientl commands,
layout) efficiently y y y y tools, layout)
Adherence to safety Rarel
procedures and , y Occasionally | Often handles
handli f equi t Doesn’t handle handles handles equipment Handles
andling ot equipmen equipment with | equipment . . -quipme equipment with
(computing unit, . . . equipment with | with required .
h . required care and | with required . required care and
peripheral devices, and safet care and required care care and safet
other equipment in Y safet and safety. safety. Y
lab) Y-
Ability to troubleshoot Not able to Rarely able to Occasionally Often able to Fully able to
software errors able to
(detection and troubleshoot the | troubleshoot troubleshoot troubleshoot | troubleshoot the
. errors the errors the errors errors
debugging) the errors
Analvsis and Not able to Rarely able to atc))lzct?)smer;?(l)lrym Often able to | Perfectly able
. YSIS ¢ analyze and perform the Perto perform the | to perform the
interpretation of . . the analysis . .
interpret analysis and analysis and analysis and
results/outputs and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

45

Lab Session 7

Objective:

To develop a thorough understanding of while and do-while loops in C++ by adeptly applying these
constructs in various contexts. Demonstrate skill in executing fundamental and advanced operations, grasp
intricate details in iterative data processing, and optimize loop performance for enhanced code efficiency.

Theory:
In C++, while and do-while are loop constructs that allow you to repeatedly execute a block of code as long

as a certain condition is true. These loops are used for repetitive tasks where you want to perform the same
set of instructions multiple times.

while Loop: .
The while loop is a fundamental control structure in C++ that @
facilitates the repetitive execution of a block of code. It is

categorized as a pre-test loop, as it evaluates a condition before
entering the loop body, as shown in Figure 7-1. This implies that if ConTc‘;ilFW False
the initial condition is false, the loop will not execute at all.
lTrue
S!!ntax Execute loop body
while (condition) { y
// Code to be executed as long as the condition @
remains true.
// Increment or update variables to eventually
make the condition false. Figure 7-1 Flowchart illustrating the execution
} of a 'while' loop in C++.

Code 7-01:

#include <iostream>
using namespace std;
int main()
{

inti=1;

while (i <=5) {

cout<<i<<"";
i++;

}

return 0;

}

46

@ Synthesize, analyze, and explain your understanding of the Code 7-01.

Code 7-02:

#include <iostream>

using namespace std;

int main() {
inti = 2; // Start with the first even number
while (i <=10) {

cout<<i<<"";
i +=2; // Increment by 2 to get the next even number

}

return 0;

}

@ Synthesize, analyze, and explain your understanding of the Code 7-02.

47

do-while Loop:

In contrast with the while loop, the do-while loop is another
looping construct in C++ that functions as a post-test loop. It
ensures that the loop body is executed at least once before
checking the loop condition, as shown in Figure 7-2 . This is
particularly useful when you want to guarantee the execution of
certain code before validating the loop condition.

Syntax

do {
// Code to be executed
// Increment or update variables to eventually

make the condition false

}

while (condition);

Code 7-03:

#include <iostream>
using namespace std;
int main() {

inti=6;

do {

cout<<i<<"";
i++;
} while (i <= 5);
return 0;

}

Do while Loop Start

V

—:> Execute Loop Body

False

True

Do while Loop End —

Figure 7-2 Flowchart illustrating the execution
of a 'do-while' loop in C++.

@ Synthesize, analyze, and explain your understanding of the Code 7-03.

48

Code 7-04:

#include <iostream>
using namespace std;
int main() {
int number;
do {
cout << "Enter a positive number: ";
cin >> number;

if (number <= 0) {
cout << "Invalid input. Please enter a positive number." << endl;

}

} while (number <= 0);

cout << "You entered: " << number << endl;
return 0;}

@ Synthesize, analyze, and explain your understanding of the Code 7-04.

Best Practices:

@ Ensure that the loop condition will eventually become false to avoid infinite loops.

@ Initialize and update loop control variables within the loop body as needed.

@ Use while loops when the number of iterations is uncertain, and use do-while loops when you need
the loop body to execute at least once.

49

Exercises:

QL. Recall the number guessing game from Lab session 02. Utilizing the concepts and skills acquired thus
far, develop two distinct programs for the number guessing game using a while loop and a do-while loop,
respectively. Consult Figure 2-11 to comprehend the execution flow and program requirements.
Additionally, analyze both programs and provide justification for the choice of the loop construct that is
better suited for this game and elucidate the reasons behind your preference.

Q2. The standard resistor values are organized into a set of series known as the E-Series. These values are
spaced to ensure that the top of the tolerance band of one value and the bottom of the tolerance band of the
next one do not overlap. Your task is to create a program for calculating and displaying the first few resistor
values in the E-Series. The program should allow the user to specify the number of resistor values they want
to generate using a while loop. Ensure that the user enters a valid number of terms (at least 2) and output
the resistor values in the E-Series. Note: The E-Series consists of resistor values that follow a geometric
progression. The program should calculate these values based on the common ratio between consecutive E-
Series values.

50

Laboratory Session No.

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-105 Computer and Programming

Date:

Software Use Rubric

Level of Attainment

results/outputs.

interpretation.

interpretation.

interpretation.

Criterion Below Average | Average Good Very Good Excellent
1) 2 3 4) (©)
|dentification of Rarely Occasionally Able to
software menu (syntax, . . oo X . X . Perfectly able to
Can’t identify identifies identifies identify . i
components, identify software
software menus. software software software
commandes, tools, menus.
menus. menus. menus.
layout etc.)
Skills to use software Can’t use Rarely uses Occasionally Often uses Efficiently uses
(schematic, syntax, software (syntax,
software software uses software software
commands, tools, efficientl efficientl efficientl efficientl commands,
layout) efficiently y y y y tools, layout)
Adherence to safety Rarel
procedures and , y Occasionally | Often handles
. . Doesn’t handle handles . Handles
handling of equipment X . . handles equipment . .
. : equipment with | equipment . . i . equipment with
(computing unit, . . . equipment with | with required .
h . required care and | with required . required care and
peripheral qlewces, gnd safety care and required care care and safety
other equipment in ' safet and safety. safety. '
lab) Y-
Ability to troubleshoot Not able to Rarely able to Occasionally Often able to Fully able to
software errors able to
. troubleshoot the | troubleshoot troubleshoot | troubleshoot the
(detection and troubleshoot
. errors the errors the errors errors
debugging) the errors
Analvsis and Not able to Rarely able to atc))lzct?)smer;?(l)lrym Often able to | Perfectly able
. YSIS ¢ analyze and perform the Perto perform the | to perform the
interpretation of . . the analysis . .
interpret analysis and analysis and analysis and
results/outputs and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

51

Lab Session 8

Objective:

To gain a comprehensive understanding of structures in C++, covering their definition, declaration, and
implementation. Apply this knowledge to create and manipulate structured data, demonstrating proficiency
in solving programming challenges through the effective utilization of C++ structures.

Theory:

In C++, a structure represents a user-defined data type that facilitates the grouping of diverse variables under
a single name. Unlike basic data types such as int or float, which imply singular values, structures empower
the creation of intricate data structures encapsulating various pieces of information.

Syntax

//Definition

struct Student {
int rollINumber;
char name[50];
float marks; };

//Declaration
Student studentl1, student?2;

//Member Access
studentl.rollNumber = 101;
strcpy(studentl.name, "Danish");
studentl.marks = 88.2;

// Printing structure members
cout << "Roll Number: " << student1.rollNumber << end]l;
cout << "Name: " << studentl.name << endl;
cout << "Marks: " << studentl.marks << endl;

A structure is defined using the struct keyword, followed by a block of variables known as members.
Members can be of different data types, including other structures.

After defining a structure, variables of that type can be declared.

Each variable becomes an instance of the structure and contains its own set of member variables.
Individual members of a structure can be accessed using the dot (.) operator.

(OROR OO

52

Code 8-01:

#include <iostream>
#include <string>
using namespace std;

// Definition of the structure
struct Person {
string name; intage; floatheight; };
int main() {
Person personl, person2;
// Initialization of structure variables
personl.name = "Alice"; personl.age =25; personl.height=1.75;
person2.name = "Bob"; person2.age = 30; person2.height = 1.80;
// Displaying information using namespace std
cout << "Person 1: " << personl.name << ", Age: " << personl.age << ", Height: " <<
personl.height << " meters\n";
cout << "Person 2: " << person2.name << ", Age: " << person2.age << ", Height: " <<
person2.height << " meters\n";
return 0; }

@ Synthesize, analyze, and explain your understanding of the Code 8-01.

Nested Structures:
Structures can be nested within other structures, enabling the representation of more complex relationships
and hierarchies.

53

Syntax

struct Address {
char street[50]; char city[50]; };

struct Employee {
int empID; char name[50]; Address empAddress; };

Code 8-02:

#include <iostream>
using namespace std;
// Definition of the Point structure
struct Point {
double x; doubley; };
// Definition of the Rectangle structure with two nested Point structures
struct Rectangle {
Point topLeft; Point bottomRight; };
int main() {
// Declaration and initialization of the nested structures
Point p1 = {2.5,4.0}; Pointp2 ={6.0, 1.0};
// Declaration and initialization of the main structure
Rectangle rect = {p1, p2};
// Printing information using nested structures
cout << "Rectangle Coordinates:" << endl;

cout << "Top Left: (" <<rect.topLeft.x <<"," <<rect.topLeft.y <<")" << endl;

cout << "Bottom Right: (" << rect.bottomRight.x << ", " << rect.bottomRight.y << ")";
return 0; }

@ Synthesize, analyze, and explain your understanding of the Code 8-02.

54

Structures provide a powerful and flexible way to organize and manage data in C++. They are particularly
useful when dealing with entities that have multiple attributes or when creating more sophisticated data
structures for practical programming tasks.

Exercises:

Q1. Develop a C++ program that manages information about resistors in a structure, allows users to input
resistor details, and provides options for relevant calculations. The primary focus is on code quality,
efficiency, and user-friendly interactions. The program should adhere to best coding practices, handle inputs
in proper units, and utilize appropriate data types.

Requirements:

1. Resistor Structure:
@ Implement a Resistor structure with fields for uniquelD, resistance, powerRating, and tolerance.
@ Ensure the use of appropriate data types for each field.

2. User Input:
@ Prompt the user to enter information for a resistor, including 1D, resistance, power rating, and
tolerance in suitable units.
@ Validate user inputs to ensure proper units and reasonable values. For example, resistance and power
rating should be positive, and tolerance should be within the valid percentage range.

3. Calculation Options:
@ Implement two calculation options for the user to choose from:
@ Option 1: Calculate Actual Resistance within Tolerance Range
@ Calculate and display the minimum and maximum resistance within the tolerance range.
@ Option 2: Calculate Current using Power and Resistance.
@ Calculate and display the rated/maximum current using the formula:

where, P is the Power Rating (watts) of resistor R (ohms).

4. Display Output:
@ Present the entered resistor details, including the unique ID, resistance, power rating, and tolerance,
in a clear and organized manner.
@ Display the result of the calculation opted by the user in the program in a clear and formatted manner.

55

5. Code Quality and Efficiency:
@ Use meaningful variable names and maintain a well-organized code structure.
© Minimize redundancy and promote code reusability.
@ Properly handle invalid inputs, providing meaningful error messages.
@ Utilize appropriate data types for variables and ensure proper unit consistency.

Q2. Develop a C++ program to manage information about microcontroller modules within an electronic
system, utilizing nested structures to represent specific attributes. The program aims to enhance
understanding and proficiency in working with nested structures.

Requirements:

1. Microcontroller Module Structure:
@ Create a structure named MicrocontrollerModule with the following attributes:
@& Module name (string)
@ Module ID (integer)
@ Module type (character, 'M' for
microcontroller)
@ Nested structure for Memory:
@ Capacity (integer, in megabytes)
@ Speed (integer, in megahertz)
@ Nested structure for Communication
Interface:
@ Protocol (string)
@ Baud rate (integer, in bits per second)

"E\Courses\Computer and Pr X+ v

Module Name: Microcontroller 1
Module ID: 1

Hemory Capacity: 256 MB

Hemory Speed: 100 MHz
Communication Protocol: UART
Baud Rate: 9660 bps

2. User Input:
@ Prompt the user to input information for a microcontroller module, including the module name, ID,
memory details (capacity and speed), and communication interface details (protocol and baud rate).
@ Validate user inputs to ensure proper data types and reasonable values.

3. Display Information:
@ Display the entered information for the microcontroller module in a clear and formatted manner.

4. Nested Structure Usage:
© Emphasize the use of nested structures to represent specific attributes such as memory and
communication interface within the main MicrocontrollerModule structure.

5. Documentation:
@ Include comments in the code to explain the purpose of the program, highlight the use of nested
structures, and provide explanations for complex logic or decisions.

56

Laboratory Session No.

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-105 Computer and Programming

Date:

Software Use Rubric

Level of Attainment

results/outputs.

interpretation.

interpretation.

interpretation.

Criterion Below Average | Average Good Very Good Excellent
1) 2 3 4) (©)
|dentification of Rarely Occasionally Able to
software menu (syntax, . . oo X . X . Perfectly able to
Can’t identify identifies identifies identify . .
components, identify software
software menus. software software software
commandes, tools, menus Menus menus menus.
layout etc.) ' ' '
Skills to use software Can’t use Rarely uses Occasionally Often uses Efficiently uses
(schematic, syntax, software (syntax,
software software uses software software
commands, tools, efficient! efficientl efficientl efficientl commands,
layout) efficiently y y y y tools, layout)
Adherence to safety Rarel
procedures and , y Occasionally | Often handles
handli f equi t Doesn’t handle handles handles equipment Handles
andling ot equipmen equipment with | equipment . . -quipme equipment with
(computing unit, . . . equipment with | with required .
h . required care and | with required . required care and
peripheral devices, and safet care and required care care and safet
other equipment in Y safet and safety. safety. Y
lab) Y-
Ability to troubleshoot Not able to Rarely able to Occasionally Often able to Fully able to
software errors able to
(detection and troubleshoot the | troubleshoot troubleshoot troubleshoot | troubleshoot the
. errors the errors the errors errors
debugging) the errors
Analvsis and Not able to Rarely able to atc))lzct?)smer;?(l)lrym Often able to | Perfectly able
. YSIS ¢ analyze and perform the Perto perform the | to perform the
interpretation of . . the analysis . .
interpret analysis and analysis and analysis and
results/outputs and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

57

Lab Session 9

Objective:
To demonstrate the principles and execution of functions in C++ and create user-defined functions,
showcasing an advanced application of programming concepts.

Theory:
In C++, a function is a self-contained block of code designed to perform a specific task. Functions enhance

code modularity, reusability, and readability. They consist of a declaration and a definition. Declarations
specify the function's prototype, while definitions contain the actual code.

@ Modularity: Breaking down a program into smaller, manageable functions.
@ Reusability: Functions can be reused in different parts of the program.
@ Readability: Functions make code more organized and easier to understand.

The functions can be widely divided into two categories as shown in Figure 9-1.

C++
Functions

Built-in User-defined
functions functions

Figure 9-1 Types of Functions

Built-in functions are predefined functions provided by the programming language or its standard libraries
to perform common operations. They are ready-made functions that can be directly used without the need
for explicit implementation, providing essential functionalities and enhancing code efficiency.

For example:
@ Input/Output Functions: cin, cout, getline().
@ Math Functions: sqrt(), pow(), abs().
@ String Functions: strlen(), strcpy(), strcmp().

A user-defined function is a custom, programmer-created function in a programming language, allowing
the encapsulation of specific logic or tasks into a modular and reusable code block within a program.

58

Syntax

// Function declaration
int addNumbers(int a, int b);

// Function definition
int addNumbers(int a, int b) {
returna +b;

}

// Function call
int result = addNumbers(5, 7);

Parameters:

Parameters are variables or values that are used to pass information into a function. They allow a function
to accept input, perform operations, and produce output based on the provided values. Parameters are
declared in the function's parameter list within parentheses following the function name.

Return Type:

The return type of a function specifies the data type of the value that the function will provide as output. It
is declared before the function name in the function declaration. Functions in C++ can return values of
various types, including integers, floating-point numbers, characters, and even custom data types.

Function Call:

A function call is the act of invoking or executing a function. It involves specifying the function name,
providing the necessary arguments (values or expressions) in the parentheses, and, in the case of functions
with a return type, capturing or utilizing the returned value.

Code 9-01:

#include <iostream>

using namespace std;

void displayMessage(); // Function declaration
int main() {

displayMessage(); // Function call
return 0; }
// Function definition
void displayMessage() {
cout << "Hello, this is a simple function!" << endl; }

59

@ Synthesize, analyze, and explain your understanding of the Code 9-01.

Code 9-02:

#include <iostream>

using namespace std;
// Function to calculate the average of two integers and return a float
float calculateAverage(int num1, int num2) {

return (float)(num1 + num2) / 2.0; }

int main() {
int firstNumber, secondNumber;
cout << "Enter the first integer: ";
cin >> firstNumber;

cout << "Enter the second integer: ";
cin >> secondNumber;

// Call the function and display the result

float average = calculateAverage(firstNumber, secondNumber);

cout << "The average of " << firstNumber << " and " << secondNumber << " is
average << endl;

return 0;

}

<<

60

@ Synthesize, analyze, and explain your understanding of the Code 9-02.

Recursive Functions:

Recursion is a technique where a function calls itself to solve a smaller instance of the same problem. It
involves a base case to prevent infinite recursion.

Code 9-03:

#include <iostream>
using namespace std;
// Recursive function for factorial
int factorial(int n) {
if(n==0||n==1){
return 1; } // Base case
else {
return n * factorial(n - 1); // Recursive case }
}
int main() {
int num;
cout << "Enter a number to calculate its factorial: ";
cin >> num;

if (num < 0) {

cout << "Factorial is undefined for negative numbers." << endl;
}else {

int result = factorial(num);

cout << "Factorial of " << num << " is: " <<result << endl; }
return 0;}

61

@ Synthesize, analyze, and explain your understanding of the Code 9-03.

Best Practices:

@ Create small, focused functions for improved readability and reusability.

@ Use descriptive names to convey the purpose of each function.

@ Minimize parameters, use meaningful names, and explicitly define return types.

@ Avoid use of global variables and pass variables as parameters to limit unintended side effects.

Exercises:

Q1. Implement a C++ program to identify the smallest inductance value among three inductors (L1, L2, L3)
entered by the user. The program prompts the user to input the inductance values, calculates the minimum
inductance using a user-defined function, and then displays the result to the user.

Q2. Develop a C++ program to compute the equivalent capacitance for capacitors organized in both series
and parallel configurations. The program should take three capacitance values as input from the user.
Additionally, incorporate two separate user-defined functions to efficiently calculate the equivalent
capacitance for both series and parallel connections.

Requirements:

1. User Input:
@ Implement a user-friendly interface to collect three capacitance values from the user.
@ Ensure proper validation and handling of input errors.

2. User-Defined Functions:
@ Create a function that should take three capacitance values as parameters and return the equivalent
capacitance for capacitors in series.

62

@ Additionally, create another function that takes the same three capacitance values as parameters and
returns the equivalent capacitance for capacitors in parallel.
3. Output:
@ Display the calculated equivalent capacitance for both series and parallel configurations.

4. Testing:
@ Test the program with different sets of capacitance values to verify its correctness.

5. Efficiency and Quality:
@ Implement code that adheres to good coding practices, including meaningful variable names, proper
indentation, and comments where necessary.
@ Ensure that the functions are efficient and correctly calculate the equivalent capacitance based on
the series and parallel configurations.

Q3. Utilizing the user-defined functions created in the previous question, implement a C++ program to
calculate the equivalent capacitance for a circuit configuration as depicted in Figure 9-2.

G, GG

1

| |
¢ e
| |

Cy Cs |G

Figure 9-2 Capacitance Arrangement

In the circuit:

@ Capacitors Cy, C, and C5 are arranged in series.

@ Capacitors C,, Cs and C, are arranged in parallel.

@ The equivalent capacitance of the series combination and the parallel combination is in series with
C,.

63

Laboratory Session No.

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-105 Computer and Programming

Date:

Software Use Rubric

Level of Attainment

results/outputs.

interpretation.

interpretation.

interpretation.

Criterion Below Average | Average Good Very Good Excellent
1) 2 3 4) (©)
|dentification of Rarely Occasionally Able to
software menu (syntax, . . oo X . X . Perfectly able to
Can’t identify identifies identifies identify . .
components, identify software
software menus. software software software
commandes, tools, menus Menus menus menus.
layout etc.) ' ' '
Skills to use software Can’t use Rarely uses Occasionally Often uses Efficiently uses
(schematic, syntax, software (syntax,
software software uses software software
commands, tools, efficient! efficientl efficientl efficientl commands,
layout) efficiently y y y y tools, layout)
Adherence to safety Rarel
procedures and , y Occasionally | Often handles
handli f equi t Doesn’t handle handles handles equipment Handles
andling ot equipmen equipment with | equipment . . -quipme equipment with
(computing unit, . . . equipment with | with required .
h . required care and | with required . required care and
peripheral devices, and safet care and required care care and safet
other equipment in Y safet and safety. safety. Y
lab) Y-
Ability to troubleshoot Not able to Rarely able to Occasionally Often able to Fully able to
software errors able to
(detection and troubleshoot the | troubleshoot troubleshoot troubleshoot | troubleshoot the
. errors the errors the errors errors
debugging) the errors
Analvsis and Not able to Rarely able to atc))lzct?)smer;?(l)lrym Often able to | Perfectly able
. YSIS ¢ analyze and perform the Perto perform the | to perform the
interpretation of . . the analysis . .
interpret analysis and analysis and analysis and
results/outputs and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

64

Lab Session 10

Objective:
To comprehend the concepts of arrays and strings in C++, including their implementation and manipulation,
and to apply these acquired skills in addressing a variety of practical scenarios.

Theory:
Arrays are fundamental data structures in programming that facilitate the storage of multiple values of the

same data type under a single variable name. They provide an efficient way to organize and access elements
in memory. In C++, arrays are zero-indexed.

@ Arrays provide a straightforward way to access elements sequentially using index values. This
allows for efficient iteration through all elements, making them suitable for tasks that involve
processing each element in a sequence.

@ Arrays allocate a contiguous block of memory to store elements of the same data type. This
contiguous allocation reduces memory fragmentation and allows for efficient use of memory,
especially when dealing with large datasets.

@ Arrays are well-suited for searching and sorting algorithms.

@ Arrays can be extended to multiple dimensions, such as 2D arrays or matrices. This feature is
beneficial for representing tabular data, images, and other structures where a two-dimensional layout
is more natural.

Syntax:

// Array declaration
int numbers[3]; // Declares an integer array with a capacity for 3 elements.

// Array initialization
numbers[0] = 10; numbers[1] = 20; numbers|[2] = 30;

// Array declaration and Initialization
int numbers|] = {10, 20, 30, 40, 50}; // Compiler infers the size.

// Accessing Elements
int x = numbers[2]; // Accesses the third element (30) and assigns it to x.

//Iterating Through an Array
for (inti = 0; i < arraySize; ++i) {
// Access and process each element, e.g., numbers][i]

}

65

Code 10-01:

#include <iostream>
using namespace std;
int main() {
const int arraySize = 5; // Size of the array
int numbers[arraySize]; // Declaration of an integer array
// Input phase: Reading numbers from the user
cout << "Enter " << arraySize << " numbers:\n";
for (inti = 0; i < arraySize; ++i) {
cout << "Number"<<i+1<<":";
cin >> numbers[i]; }
// Processing phase: Calculating sum and average
int sum = 0;
for (inti = 0; i < arraySize; ++i) {
sum += numbers[i]; }
double average = sum / arraySize;
// Output phase: Displaying results
cout << "\nSum: " <<sum << "\n"; cout << "Average: " << average << "\n";
return 0; }

@ Synthesize, analyze, and explain your understanding of the Code 10-01.

66

Multidimensional Array:
A multidimensional array in C++ refers to an array that incorporates more than one dimension. The most

common type of multidimensional array is a two-dimensional array, but arrays with three or more
dimensions can also be defined in C++. A two-dimensional array in C++ is essentially an array of arrays. It
can be visualized as a table or grid with rows and columns.

Syntax:

// Declaration and Initialization of a 2D Array with 3 rows and 4 columns
int matrix|[3][4] = {
{1,2,3,4},

{5; 6; 7; 8};
{9,10, 11, 12}
5

Code 10-02:

#include <iostream>
using namespace std;
int main() {
// Declaration and Initialization of a 2D Array
int matrix|[3][4] = {
{1,2,3,4}, {5,6,7,8}, {9,10,11,12} }

// Printing the 2D Array
cout << "2D Array Contents:\n";
for (inti=0;i < 3; ++i) {
for (intj=0;j < 4; ++j) {
cout << matrix[i][j] << "\t";
cout<<"\n"; }

// Accessing Individual Elements
int element = matrix[1][2]; // Accessing element in the first row, second column
cout << "\nElement at matrix[1][2]: " << element << "\n";
return 0; }

67

@ Synthesize, analyze, and explain your understanding of the Code 10-02.

Strings:
In C++, strings are sequences of characters represented by the *string’ class. Unlike arrays of characters,

C++ strings offer dynamic memory management and various member functions that facilitate string
manipulation.

Syntax:

// Declaration and Initialization of Strings
string greeting = "Hello, World!";

C++ offers a comprehensive set of member functions and algorithms in the <string> header, facilitating the
manipulation and processing of strings. Code 10-03 demonstrates the utilization of various C++ string
manipulation functions.

68

Code 10-03:

#include <iostream>
#include<string>
using namespace std;
int main() {

// length() / size(): Returns the number of characters in the string.
string myString = "Hello, World!";
int length = myString.length(); // or myString.size();

// append(): Appends a string or a portion of it to the end of another string.
string greeting = "Hello";
greeting.append("”, World!");

// substr(): Returns a substring of the original string.
string sentence = "The quick brown fox";
string substring = sentence.substr(4, 5); // Starting location: 4, length:5

// find(): Searches for a substring within a string and returns the position of the first
occurrence.

string phrase = "The cat in the hat";

int position = phrase.find("cat"); // you can also use size_t type instead of int

// compare(): Compares two strings lexicographically.
string strl = "apple"; string str2 = "banana";
int result = strl.compare(str2);

// replace(): Replaces a portion of the string with another string.
string sentence = "I like programming.";
sentence.replace(7, 11, "coding"); // Replaces "programming"” with "coding"

// erase(): Erases a portion of the string.
string word = "apple";
word.erase(3, 1); // Erases the character at position 3

// empty(): Checks if the string is empty.
string message = "Hello, World!";

if (message.empty()) {
// String is empty }

// at(): Accesses the character at a specified position.
string alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
char letter = alphabet.at(4); // Accesses the character 'E'

return 0; }

69

Code 10-04:

#include <iostream>
#include <string>
using namespace std;
int main() {
string phrase = "The cat in the hat";

int position = phrase.find("cat");
if (position !'=-1) {
cout << "Found at position: " << position << endl; }
else {
cout << "Not found." << endl; }
return 0; }

@ Synthesize, analyze, and explain your understanding of the Code 10-04.

Exercises:

Task: Universal Number System Conversion Utility for Computer Architecture

As part of an embedded system project, you are tasked with developing a Universal Number System
Conversion Utility that incorporates a range of number systems crucial for low-level programming and
computer architecture. The utility should handle conversions between binary, octal, decimal, and
hexadecimal representations, providing a comprehensive tool for developers working close to the hardware.

70

Requirements:

1. User Input:

C
C
C

A number.
The base of the provided number.
The target base for conversion.

2. User-Defined Functions:

@ Decimal to any base function.

@ Binary to any base function.

@ Octal to any base function.

@ Hexadecimal to any base function.

3. Hints:

@ String Representation

v The input binaryNumber is a string representing a binary number.

v’ Characters in a string can be accessed using iteration.

@ Character to Numeric Value Conversion

v (digit - '0") converts a character representing a digit to its numeric value.

v' ASCII values are used, where '0' to '9" have consecutive integer values.

@ Binary to Decimal Conversion

v Use a loop to iterate through each binary digit.

v’ Perform a left shift (decimalEquivalent * 2) for each binary digit.

v Add the numeric value of the current binary digit to decimalEquivalent.

@ Conversion to Target Base

v After binary to decimal conversion, use another function (decimalToBase) to convert to the target
base.

v Encourage a modular and reusable approach to number system conversions.

@ Use of Functions

v Break down the problem into smaller functions for readability and reusability.

v Functions like decimalToBase can handle common logic for conversion between decimal and other
bases.

@ Testing and Debugging

v' Test the function with different binary numbers and target bases to ensure correctness.

v’ Use debugging techniques to identify and fix any issues.

71

Laboratory Session No.

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-105 Computer and Programming

Date:

Software Use Rubric

Level of Attainment

results/outputs.

interpretation.

interpretation.

interpretation.

Criterion Below Average | Average Good Very Good Excellent
1) 2 3 4) (©)
|dentification of Rarely Occasionally Able to
software menu (syntax, . . oo X . X . Perfectly able to
Can’t identify identifies identifies identify . .
components, identify software
software menus. software software software
commandes, tools, menus Menus menus menus.
layout etc.) ' ' '
Skills to use software Can’t use Rarely uses Occasionally Often uses Efficiently uses
(schematic, syntax, software (syntax,
software software uses software software
commands, tools, efficient! efficientl efficientl efficientl commands,
layout) efficiently y y y y tools, layout)
Adherence to safety Rarel
procedures and , y Occasionally | Often handles
handli f equi t Doesn’t handle handles handles equipment Handles
andling ot equipmen equipment with | equipment . . -quipme equipment with
(computing unit, . . . equipment with | with required .
h . required care and | with required . required care and
peripheral devices, and safet care and required care care and safet
other equipment in Y safet and safety. safety. Y
lab) Y-
Ability to troubleshoot Not able to Rarely able to Occasionally Often able to Fully able to
software errors able to
(detection and troubleshoot the | troubleshoot troubleshoot troubleshoot | troubleshoot the
. errors the errors the errors errors
debugging) the errors
Analvsis and Not able to Rarely able to atc))lzct?)smer;?(l)lrym Often able to | Perfectly able
. YSIS ¢ analyze and perform the Perto perform the | to perform the
interpretation of . . the analysis . .
interpret analysis and analysis and analysis and
results/outputs and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

72

Lab Session 11

Objective:
To demonstrate effective utilization of pointers in tasks such as dynamic memory allocation, data
manipulation, and code optimization for addressing and solving programming challenges.

Theory:
Pointers are variables that store the memory address of another variable. They provide a powerful

mechanism for handling memory and manipulating data at a low level. Understanding pointers is essential
for efficient memory management and working with complex data structures.

@ Dynamic Memory Allocation: Pointers allow for dynamic memory allocation, enabling flexible
and efficient use of memory at runtime.

@ Efficient Memory Usage: Pointers reduce memory duplication by enabling indirect access to data,
optimizing overall memory usage.

@ Passing Parameters by Reference: Pointers facilitate passing parameters by reference to functions,
allowing for modifications to the original data.

© Dynamic Data Structures: Pointers are crucial for implementing dynamic data structures like
linked lists, trees, and graphs.

© Array Manipulation: Pointers simplify array manipulation, making it easier to iterate over
elements, allocate memory, and pass arrays to functions.

Syntax:

int *ptr; // declares a pointer to an integer
intx=20;

int *ptr = &x; // ptr now stores the address of variable x
inty = *ptr; //y now holds the value stored at the address pointed by ptr

Code 11-01:

#include <iostream>
using namespace std;
int main() {

inti=>5;

int *ptr = &i;

cout << "Value of i through pointer: " << *ptr << endl;
*ptr = 10;

cout << "Updated value of i: " << i << endl;

return 0;

}

73

@ Synthesize, analyze, and explain your understanding of the Code 11-01.

Pointer arithmetic is the manipulation of pointers using arithmetic operations. In C++, pointer arithmetic is
particularly useful when working with arrays or dynamically allocated memory. The key operations
involved in pointer arithmetic are addition (+), subtraction (-), increment (++), and decrement (--).

@ Incrementing a pointer (ptr++) moves it to the next memory location of its type.

@ Decrementing a pointer (ptr--) moves it to the previous memory location of its type.

© Adding an integer to a pointer (ptr + n) moves it forward by n times the size of its type.

@ Subtracting an integer from a pointer (ptr - n) moves it backward by n times the size of its type.

Code 11-02:

#include <iostream>

using namespace std;

int main() {

int a=25; float b=10.329; char c='k";

int* p1=&a; float* p2 = &b; char* p3 = &c;

cout<<"FrRRRRRER Pogjnter P *¥¥kk¥Ekkk"ccand];

cout<<"Value at *P1: "<<*pl<<endl; cout<<"Value in P1: "<<pl<<endl<<endl;
cout<<"¥r¥RFRRER Pointer P2 *¥**¥¥*¥"<<endl;

cout<<"Value at *P2: "<<*p2<<endl; cout<<"Value in P2: "<<p2<<endl<<endl;
cout<<"¥¥FxREX Pointer P3 *¥F*¥F**"<<endl;

cout<<"Value at *P3: "<<*p3<<endl;

cout<<"Value in P3: "<<static_cast<void*>(p3)<<endl<<endl; //to resolve address
display issue due to compiler

*p2 = *p2 + *p1;

cout<<"*RxikRx JpdatedPointer P2 **#**¥dx"<<endl;

cout<<"Value at *P2: "<<*p2<<endl; cout<<"Value in P2: "<<p2<<end];
return 0; }

@ Synthesize, analyze, and explain your understanding of the Code 11-02.

Passing pointers to functions and returning values through pointers are common practices in C++ and are
used to manipulate data in a more efficient way compared to passing by value. When passing a pointer to a
function, it allows the function to access and modify the data at the memory location pointed to by the
pointer. This is particularly useful when avoiding making copies of large data structures or when a function
needs to modify the original data. Pointers can also be used to return multiple values from a function. Instead
of returning a single value, pointers are passed to the function to store the results. This is particularly useful
when a function needs to return more than one value or when avoiding returning complex data structures
by value.

Code 11-03:

#include <iostream>
using namespace std;

void calculateValues(int num, int *square, int *cube) {
*square = num * num;
*cube = num * num * num; }

int main() {
int number = 3;
int square, cube;
calculateValues(number, &square, &cube);
cout << "Square: " << square << endl;
cout << "Cube: " << cube << end]l;
return 0;

75

@ Synthesize, analyze, and explain your understanding of the Code 11-03.

Pointers in C++ offer powerful capabilities for efficient memory management and data manipulation. They
enable dynamic memory allocation, facilitate the passing of data by reference, and provide a means to work
with arrays and dynamic data structures. Function pointers contribute to code modularity, and pointer
arithmetic allows for low-level memory manipulation. While pointers enhance flexibility, it's crucial to use
them judiciously to avoid common pitfalls such as memory leaks and segmentation faults. Modern C++
introduces features like smart pointers, providing safer alternatives for memory management.

Exercises:

Q1. Design and implement a C++ program that uses pointers to process real-time sensor data from an
embedded system. Create a function that calculates statistical parameters (mean, variance, etc.) of the sensor
readings stored in an array. Use pointers to efficiently iterate through the data and perform the calculations.

Q2. Design a C++ program that calculates and displays properties of geometric shapes. The program should
have functions to calculate properties for both a sphere and a cylinder. Implement the following tasks:

@ Create a menu to allow the user to choose between calculating properties for a sphere or a cylinder.

@ For a sphere, prompt the user for the radius and calculate/display the diameter, surface area, and
volume.

@ For acylinder, prompt the user for the radius and height, then calculate/display the diameter, surface
area, and volume.

@ Use a switch-case structure to efficiently handle the user's choice and call the appropriate function
for calculations.

@ Ensure that the program handles invalid input gracefully, such as entering negative values for radius
or height.

76

Laboratory Session No.

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-105 Computer and Programming

Date:

Software Use Rubric

Level of Attainment

results/outputs.

interpretation.

interpretation.

interpretation.

Criterion Below Average | Average Good Very Good Excellent
1) 2 3 4) (©)
|dentification of Rarely Occasionally Able to
software menu (syntax, . . oo X . X . Perfectly able to
Can’t identify identifies identifies identify . i
components, identify software
software menus. software software software
commandes, tools, menus.
menus. menus. menus.
layout etc.)
Skills to use software Can’t use Rarely uses Occasionally Often uses Efficiently uses
(schematic, syntax, software (syntax,
software software uses software software
commands, tools, efficientl efficientl efficientl efficientl commands,
layout) efficiently y y y y tools, layout)
Adherence to safety Rarel
procedures and , y Occasionally | Often handles
. . Doesn’t handle handles . Handles
handling of equipment X . . handles equipment . .
. : equipment with | equipment . . i . equipment with
(computing unit, . . . equipment with | with required .
h . required care and | with required . required care and
peripheral qlewces, gnd safety care and required care care and safety
other equipment in ' safet and safety. safety. '
lab) Y-
Ability to troubleshoot Not able to Rarely able to Occasionally Often able to Fully able to
software errors able to
. troubleshoot the | troubleshoot troubleshoot | troubleshoot the
(detection and troubleshoot
. errors the errors the errors errors
debugging) the errors
Analvsis and Not able to Rarely able to atc))lzct?)smer;?(l)lrym Often able to | Perfectly able
. YSIS ¢ analyze and perform the Perto perform the | to perform the
interpretation of . . the analysis . .
interpret analysis and analysis and analysis and
results/outputs and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

77

Lab Session 12

Objective:

Synthesize object-oriented programming principles to design and implement classes, demonstrate

inheritance relationships, and create effective object-oriented solutions for various real-life problems.

Theory:

Object-Oriented Programming (OOP) is a programming paradigm that organizes code structure around the
concept of "objects.” It's a way of designing and structuring software to make it more modular, flexible, and
reusable. In OOP, everything is considered an object, which is an instance of a class. A class is a blueprint
or template that defines the properties (attributes or fields) and behaviors (methods or functions) that the

objects of the class will have.

@ Class: A class is a user-defined blueprint or prototype from which objects are created. It defines the
properties and behaviors common to all objects of that type.
@ Object: An object is an instance of a class, created based on the class blueprint. Objects have both
state (attributes or properties) and behavior (methods or functions).
@ Encapsulation: Encapsulation is the bundling of data (attributes) and methods (functions) that
operate on that data into a single unit (class). It helps in hiding the internal details and protecting the

integrity of the data.

Code 12-01:

#include <iostream>
// Class declaration
class MyClass {
public: // Access specifier - members
are accessible outside the class
// Attributes
int myInteger;
double myDouble;
// Constructor
MyClass(); // Constructor
declaration
// Method
void displayInfo(); };
// Constructor definition
MyClass::MyClass() {
mylInteger = 0;
myDouble = 0.0; }

// Method definition
void MyClass::displayInfo() {

std::cout << "Integer: " << myInteger
<< ", Double: " << myDouble << std::endl;

}

int main() {
// Creating an object of MyClass
MyClass myObject;

// Accessing attributes and methods
myObject.mylInteger = 42;
myObject.myDouble = 3.14;
myObject.displayInfo();

return 0;

78

@ Synthesize, analyze, and explain your understanding of the Code 12-01.

@ Inheritance: Inheritance is a mechanism that allows a new class (subclass or derived class) to inherit
properties and behaviors from an existing class (superclass or base class). It promotes code reuse
and establishes a relationship between classes.

@ Polymorphism: Polymorphism allows objects of different classes to be treated as objects of a
common base class. It enables the use of a single interface to represent different types of objects.

@ Abstraction: Abstraction is the process of simplifying complex systems by modeling classes based
on essential properties and behaviors. It hides the unnecessary details while exposing only what is
necessary for the outside world.

Code 12-02:

#include <iostream>
// Base class
class Vehicle {
public:
virtual void start() const {
std::cout << "Vehicle starts." << std::endl; } };
// Derived class
class Car : public Vehicle {
public:
void start(){
std::cout << "Car engine starts." << std::endl; } };
int main() {
Vehicle myVehicle; Car Sedan;
myVehicle.start(); Sedan.start();
return 0; }

79

@ Synthesize, analyze, and explain your understanding of the Code 12-02.

Object-Oriented Programming (OOP) offers several advantages that contribute to the development of
robust, maintainable, and scalable software systems.

© Modularity: Encapsulation allows bundling of data and methods, enhancing code organization.

@ Reusability: Objects and classes can be reused, reducing development time and effort.

@ Flexibility and Extensibility: Code can be easily modified and extended without affecting the entire
system.

@ Maintainability: OOP code is more readable, making bug fixing and updates simpler.

@ Readability: Classes and objects mirror real-world scenarios, enhancing code comprehension.

@ Code Organization: OOP provides a natural structure for organizing code based on the problem
domain.

@ Improved Problem Solving: Breaking down complex problems into smaller parts promotes better
problem-solving.

@ Encapsulation and Information Hiding: Data and methods are encapsulated, controlling access and
protecting data integrity.

@ Inheritance and Polymorphism: Enable code reuse and flexibility in treating objects as instances of
their base class.

Exercises:

Q1. Write a C++ program that defines a class named Student. The class should have member variables for
the student's name, roll number, and marks. Implement member functions to set and display this information
for a student. Create an object of the Student class, set its information, and then display it.

Q2. Design a simple class hierarchy for electronic components in C++. Implement a base class
ElectronicComponent with a member variable type and two derived classes, Resistor and Capacitor. Create
objects for a resistor and a capacitor, and display their types using the displayInfo() function.

80

Laboratory Session No.

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-105 Computer and Programming

Date:

Software Use Rubric

Level of Attainment

results/outputs.

interpretation.

interpretation.

interpretation.

Criterion Below Average | Average Good Very Good Excellent
1) 2 3 4) (©)
|dentification of Rarely Occasionally Able to
software menu (syntax, . . oo X . X . Perfectly able to
Can’t identify identifies identifies identify . .
components, identify software
software menus. software software software
commandes, tools, menus Menus menus menus.
layout etc.) ' ' '
Skills to use software Can’t use Rarely uses Occasionally Often uses Efficiently uses
(schematic, syntax, software (syntax,
software software uses software software
commands, tools, efficient! efficientl efficientl efficientl commands,
layout) efficiently y y y y tools, layout)
Adherence to safety Rarel
procedures and , y Occasionally | Often handles
handli f equi t Doesn’t handle handles handles equipment Handles
andling ot equipmen equipment with | equipment . . -quipme equipment with
(computing unit, . . . equipment with | with required .
h . required care and | with required . required care and
peripheral devices, and safet care and required care care and safet
other equipment in Y safet and safety. safety. Y
lab) Y-
Ability to troubleshoot Not able to Rarely able to Occasionally Often able to Fully able to
software errors able to
(detection and troubleshoot the | troubleshoot troubleshoot troubleshoot | troubleshoot the
. errors the errors the errors errors
debugging) the errors
Analvsis and Not able to Rarely able to atc))lzct?)smer;?(l)lrym Often able to | Perfectly able
. YSIS ¢ analyze and perform the Perto perform the | to perform the
interpretation of . . the analysis . .
interpret analysis and analysis and analysis and
results/outputs and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

81

Lab Session 13

OPEN-ENDED LAB

Department of Electronic Engineering

Course Title: Computer and Programming

Course Code: EL-105 Year: First Year Semester: Fall 2023

Designing and Implementation of Sentiment Analysis System in C++

This comprehensive problem is strategically designed to address the learning objectives associated with
Course Learning Outcomes CLO2 (C4/PLO4) and CLO3 (C5/PLQOG6). It serves as a dual-purpose evaluation
tool, seamlessly integrating the Complex Engineering Problem (CEP) and Open-Ended Lab (OEL)
components.

For the CLO2 assessment, the emphasis lies in gauging students' analytical ability as they investigate the
complexities of the problem. Their cognitive skills, honed throughout the course, will be put to the test as
they analyse the problem and devise a detailed algorithm to address the complexities inherent in the CEP.

Conversely, CLO3 evaluation focuses on the practical application of programming concepts. Students will
be tasked with synthesizing their understanding of programming principles, particularly in C++, and
translating them into functional code. The focus is on their ability to bridge the gap between theoretical
knowledge and practical implementation, showcasing a robust grasp of programming concepts.

Distinct rubrics tailored for CEP and OEL assessments will be employed, ensuring a nuanced evaluation
that captures the essence of both problem-solving and practical programming proficiency. This multifaceted
approach aims to comprehensively measure students' achievements in CLO2 and CLO3, providing valuable
insights into their analytical thinking and programming acumen, targeting the attainment of PLO-4:
Investigation and PLO-6: The Engineer and Society.

82

Objective:

Design and implement a sentiment analysis system in C++ to analyse real-time text input by the user
and predict the sentiment of the text into three classes: Positive, Negative, and Neutral sentiments.

Task Components:

Assessment Emphasis:

@ Implementation of a sentiment analysis system in C++.

@ Evaluation of students’ ability to translate theoretical knowledge into practical implementation.

© Assessment of the clarity and efficiency of the code, adherence to coding standards, and the
effectiveness of the implemented sentiment analysis system.

@ Showcasing creativity and problem-solving skills during the coding and implementation phases.

Deliverables:

@ Report on sentiment analysis, addressing societal issues related to sentiments in text over social
media and proposing solutions achievable through a sentiment analysis system.

@ Algorithm and flowchart detailing the design and logic of the sentiment analysis system.

© Comprehensive documentation explaining the thought process, decisions made during algorithm
design, and challenges addressed during implementation.

@ Sentiment analysis system coded in C++.

@ Well-documented, efficient C++ code implementing the sentiment analysis system.

@ Example sentences demonstrating the prediction of sentiment in the text through the implemented
system.

Qutcomes:

@ Practical Application of Programming Concepts: In this OEL, students will practically apply
programming concepts by implementing the sentiment analysis system in C++, bridging the gap
between theoretical knowledge and real-world application (CLO3:C5).

@ Tangible Solution: The culmination of the exercise is the tangible outcome of a well-executed
sentiment analysis system. This reflects not only mastery of programming skills but also a practical
understanding of how these skills can be employed to address real-world challenges.

@ Comprehensive Skill Set: Overall, the exercise aims to equip students with a comprehensive skill

set, encompassing analytical thinking, effective problem-solving capabilities, and proficiency in
practically applying programming concepts to solve complex engineering problems.

83

Associated Course Learning Outcome:

Following course learning outcome is associated with this activity:

Taxonomy Programme learning
CLOs level outcome (PLO)
Design and develop innovative programming and Al
CLO 3 | based solutions to tackle complex real-world C5 PLO-6
engineering challenges.
TARGETED CEA ATTRIBUTES:
CEA Attributes

a Range of Resources
Level of Interaction

w Innovation

[0 Consequences
Familiarity

Assessment:

Assessment will be done according to the attached rubric.

84

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code & Title: EL-105 Computer and Programming
Assessment Rubric for OEL

F/OBEM 01/18/00
Level of Attainment
o Below
Criterion Average Good Very Good Excellent
Average
1) @) (4) (%)
1)
Identification of
software menu Can’t Rarel .
(syntax identif identifi{es Occasionally | \p1e 1o identify | | oTTectly ableto
y ' y identifies software identify software
components, software software software menus
menus menus
commands, tools, menus menus
layout etc.)
Fails codin Minimal .
Adherence to g Consistent Exemplary
. standards; adherence; Sets gold standard;
coding standards, . adherence; good adherence; .
. poor code basic code ; exceptional code
code quality, and . . . code quality; advanced code . .
quality; quality; basic . . . quality; outstanding
overall system . . proficient system | quality; highly
. ineffective system . . system
effectiveness . effectiveness effective system .
system effectiveness effectiveness
Practical
application of Limited C++ . .
PP . . Basic C++ Effective C++ Advanced C++ .
programming application; . - . o Exceptional C++
. skills; some | application; minor application;
concepts in C++, struggles . . . mastery; flawless
. - algorithm algorithm close algorithm . .
adhering to the with - - algorithm execution
. . . deviations deviations adherence
defined algorithm algorithm
and flowchart
Creativity and
problem-solving Minimal . .
. L Basic . Exceptional
skills creativity . Effective Advanced L
demonstration . . creativity and
demonstrated and . demonstration of creativity and .
. . of creativity . . problem-solving
during the coding problem- creativity and problem-solving
. and problem- . . mastery
and solving . problem-solving | skills showcased
. . . solving demonstrated
implementation evident
phases
Report is . Report is
F.) Report is p
submitted but) submitted and
.. submitted and
Unable to is incomplete somewhat Complete report
. somewhat follows .
OEL Report submit the and does not . follows the with proper format
the prescribed . . .
report follow the . . prescribed is submitted
. format with major .
prescribed . . format with few
portions missing . .
format portions missing

Student’s Name: Seat No.:

Total Score = Instructor’s Signature:

	Lab Session 1
	Lab Session 2
	Lab Session 3
	Lab Session 4
	Lab Session 5
	Lab Session 6
	Lab Session 7
	Lab Session 8
	Lab Session 9
	Lab Session 10
	Lab Session 11
	Lab Session 12
	Lab Session 13

