

Department of Electronic Engineering

NED University of Engineering & Technology

PRACTICAL WORKBOOK

For the course of

ROBOTICS (EL-422)

For B.E (EL)

Instructor’s Name:____________________________________

Student’s Name:______________________________________

Roll No.: Batch:_________________

Semester: Year:__________________

Department:___

LABORATORY WORKBOOK FOR THE COURSE

ROBOTICS (EL-422)

Prepared By:

Miss Sidra Rahman (Lecturer)

Miss Mariyum Jamshid (Lecturer)

Dr. Syed Riaz Un Nabi (Assistant Professor)

Approved By:

The Board of Studies

Department of Electronic Engineering

CONTENTS

S. No. Date Cognitive /

Psychomotor

Level

CLO List of Experiments Page Signature

1.

C3 2

Demonstration of “Peter Corke” MATLAB
Robotics Toolbox. Apply the translational changes
during the simulation of stationary robot in the
toolbox.

4

2.

C3 2

Compute the rotational changes during the

simulation of stationary robot in the robotics

toolbox.

17

3.

C3 2
Use the kinematic principle for a 2 DOF industrial
manipulator and to simulate in the toolbox.

27

4.

C3 2

Illustrate the inverse kinematic principle of a

PUMA industrial manipulator and to test in

toolbox.

34

5.

C3 2

Determine the translational changes during the

simulation of moving robot in the robotics toolbox

46

6.

C3 2

Examine the concept of localization of a mobile

robot and testing the movement of a robot using

MATLAB based programming.

55

7.

C3 2

Derive the concept of simultaneous localization

and mapping of a mobile robot and testing the

working of the robot using MATLAB based

programming.

62

8.

P3 3

Analyze the functioning of Robot Operating

System (ROS)

70

9.

P3 3
Imitate the urdf exemplary model for a 2 DOF

industrial robot and to simulate in ROS

75

10.

P3 3
Imitate the urdf model for a differential drive

moving robot and to simulate in ROS

83

11.

P3 3
Operate under supervision the working of a 4 DOF

industrial robot and to interface it with ROS

94

12.

P3 3

Manipulate with guidance the working and

interfacing of a moving rover and to run the rover

using ROS

98

Open

Ended

Lab

P3 3

Development of student’s based small

industrial/rover hardware, integration with

required electronic components and operation of

the robot as per given commands executed using

ROS.

105

4

Lab Experiment # 01

Objective:

Demonstration of “Peter Corke” MATLAB Robotics Toolbox. Apply the translational changes during the

simulation of stationary robot in the toolbox.

Equipment:

PCs with installed MATLAB and Peter Corke Robotics Toolbox

Theory:

Introduction to Robotics:

• Robotics is defined as an Art with some knowledge base to design and build useful autonomous or

semiautonomous systems which can provide assistance to Humans [1].

• Robot is normally referred to system which is providing assistance with some autonomy.

Types of Robots:

We will discuss two types of Robots in our course:
1. Industrial Robotic Arm:

A robotic arm, sometimes referred to as an industrial robot, is often described as a 'mechanical' arm. It is a device

that operates in a similar way to a human arm, with a number of joints that either move along an axis or can rotate

in certain directions [1].

2. Moving Robot (Rover):

A rover (or sometimes planetary rover) is a planetary surface exploration device designed to move across the solid

surface on a planet or other planetary mass celestial bodies [2].

5

Robot Components:
A Robot consists of several components, following are:

• Manipulator (or rover): main body of robot

• Links: Joining parts of robot which are associated with main body or other parts

• Joints: Provide connectivity between different parts

• Actuators: Agents which are responsible to provide force for motion on different parts

• Sensors: Agents which are responsible to sense rate of motion of robot itself or objects nearer to robot with further

details

• End effector: The part at the last joint (hand/gripper)

• Controller: A numerically supported agent responsible to control all motions of robot

• Processor (Brain): A numerically supported agent responsible to determine and estimate behavior of robot and its

surroundings and to generate commands to different parts

• Software: A series of instructions which are provided to Processor; for designing of Robot we will be using two

software’s in our lab sessions; MATLAB & ROS

MATLAB:

The name MATLAB stands for MATrix LABoratory. M ATLAB was written originally to provide easy access

to matrix software developed by the LINPACK (linear system package) and EISPACK (Eigen system package)

projects.

MATLAB is a high-performance language for technical computing. It integrates Computation, visualization, and

programming environment. Furthermore, MATLAB is a modern programming language environment: it has

sophisticated data structures, contains built-in editing and debugging tools, and supports object-oriented

programming. These factors make MATLAB an excellent tool for teaching and research.

It has powerful built-in routines that enable a very wide variety of computations. It also has easy to use graphics

commands that make the visualization of results immediately available. Specific applications are collected in

packages referred to as toolbox. There are toolboxes for signal processing, symbolic computation, control theory,

simulation, optimization, and several other fields of applied science and engineering.

Starting MATLAB:

After logging into account, double-click on the MATLAB shortcut icon (MATLAB) on Windows desktop. A

special window called the MATLAB desktop appears. The desktop is a window that contains other windows.

The major tools within or accessible from the desktop are: The Command Window the Command History the

Workspace the Current Directory the Help Browser the Start button

6

Peter Corke Robotics Toolbox:
The toolbox has developed by Prof. Peter Corke (QUT, Australia) and demonstrated in his robotic book [3]. The

toolbox provided many functions that are useful for the study and simulation of classical arm-type robotics, for

example such things as kinematics, dynamics, and trajectory generation. The Toolbox also provides functions

for manipulating and converting between data types such as vectors, homogeneous transformations and unit-

quaternions which are necessary to represent 3-dimensional position and orientation.

The Toolbox uses a very general method of representing the kinematics and dynamics of serial-link manipulators

as MATLAB objects. Robot objects can be created by the user for any serial-link manipulator and a number of

examples are provided for well-known robots from Kinova, Universal Robotics, and Rethink as well as classical

robots such as the Puma 560 and the Stanford arm.

The toolbox also supports mobile robots with functions for robot motion models (unicycle, bicycle), path

planning algorithms (bug, distance transform, D*, PRM), dynamic planning (lattice, RRT), localization (EKF,

particle filter), map building (EKF) and simultaneous localization and mapping (EKF), and a Simulink model a

of non-holonomic vehicle. The Toolbox also includes a detailed Simulink model for a quadrotor flying robot.

The programming commands of this toolbox have provided in the book and students can find softcopies on

provided web links.

7

Advantages of the Toolbox:

 The code is mature and provides a point of comparison for other implementations of the same algorithms;

 The routines are generally written in a straightforward manner which allows for easy understanding,

perhaps at the expense of computational efficiency. If you feel strongly about computational efficiency

then you can always rewrite the function to be more efficient, compile the M-file using the MATLAB

compiler, or create a MEX version;

 Since source code is available there is a benefit for understanding and teaching.

Installing the Toolbox:

There are two versions of the Robotics Toolbox:

 RTB9.10, the last in the 9th release is what is used in Robotics, Vision & Control (1st edition) and the

Robot Academy.

 RTB10.x is the current release and is used in Robotics, Vision & Control (2nd edition)

Both are available for installation using one of three installation methods:

1. Direct access to a shared MATLAB Drive folder (for MATLAB19a onward)

2. Download a MATLAB Toolbox install file (.mltbx type), this is the latest version from GitHub

3. Clone the source files from GitHub

Install from shared MATLAB Drive folder

This will work for MATLAB Online or MATLAB Desktop provided you have MATLAB drive setup.

Note that this includes the Machine Vision Toolbox (MVTB) as well.

RVC 2nd edition: RTB10+MVTB4 (2017)
1. Download the required toolbox

2. Save it at any location

3. Open your MATLAB

4. Go to Home tab then select the Set path

5. Add with Subfolder, browse the location of the RVC toolbox then Save and Close

6. For checking the proper installation of RVC tool’s installed files; write command startup_rvc

7. This must show the following results as shown below:

https://www.mathworks.com/products/matlab-drive.html
https://drive.matlab.com/sharing/e668b3b4-a452-464b-8e6e-77280e6cce21

8

In order to see the usage of the tool box, lets apply the translational changes occurring in stationary robot and

simulating the translational changes in the robotics toolbox

Industrial Robots or Manipulators:

“A robot is a re-programmable, multifunction manipulator designed to move material, parts, tools, or special

devices through variable programmed motions for the performance of a variety of tasks” [1].

Cartesian Co-Ordinate Robotic Manipulators:

The Cartesian co-ordinate robot is one that consists of a column and an arm [1]. It is sometimes called an x-y-z

robot, indicating the axes of motion. The x-axis is lateral motion, the y-axis is longitudinal motion, and the z-

axis is vertical motion. Thus, the arm can move up and down on the z-axis; the arm can slide along its base on

the x-axis; and then it can telescope to move to and from the work area on the y-axis. The Cartesian co-ordinate

robot was developed mainly for arc welding, but it is also suited for many other assembly operations.

Robots with Cartesian configurations consists of links connected by linear joints (L). Gantry robots are Cartesian

robots (LLL). A robot with 3 prismatic joints – the axes consistent with a Cartesian coordinate system.

Commonly used for:

 Pick and place work

 Assembly operations

 Handling machine tools

 Arc welding

In Cartesian coordinates translation may be represented by a position vector, Ap, If A is not given the world

coordinate frame is assumed. Many representations of 3D orientation have been proposed but the most used in

robotics are orthonormal rotation matrices. The homogeneous transformation is a 4 ×4 matrix which represents

translation and orientation and can be compounded simply by matrix multiplication. Such a matrix representation

is well matched to MATLAB’s powerful capability for matrix manipulation. Homogeneous transformations

describe the relationships between Cartesian coordinate frames in terms of a Cartesian translation, p, and

9

orientation expressed as an orthonormal rotation matrix, R is a 3 × 3.

Representation of a Point in Space:

A point P in space can be represented by three coordinates relative to a reference frame [1]:

P = axi + byj + czk

Representation of a vector in Space:

A vector can be presented by three coordinates of its tail and its head. If the vector starts at point A and end at

point B, then it can be represented by PAB = (Bx - Ax)i + (By - Ay) j +(Bz - Az) k.

Where ax, by and cz are three components of the vector in the reference frame. The three components of the vector

can also be written in matrix form as:

 ax

P= by

 cz

this representation can be slightly modified to also include a scale factor w such that if Px, Py and Pz are divide

by w, they will yield ax, by, and cz.

Representation of a Frame at the origin of a fixed reference frame:

A frame is generally represented by three mutually orthogonal axes (x, y and z). since we may have more than 1

10

frame at any given time, we will use axes x, y and z to represent the fixed Universe reference frame Fx,v,z and a

set of axes n, o and a to represent another moving frame Fn,o,a relative to the reference frame.

Transformation:

Movement of a local frame in space with respect to a fixed frame is known as Transformation

There are two different types of transformations:

• Translations: Having displacement without orientation change

• Rotations: Having only orientation change

• Combined transformations: Having both changes (Translations & Rotations)

Translational Transformation:

If a frame moves in a space without any change in its orientation then the transformation is pure translation. In

this case, the vector remains in the same direction and thereforer don’t change . the only thong that change is the

location of the origin of the frame relative to the refrance frame.

Procedure:

We are using MATLAB 2019(a) for performing these operations, by using MATLAB Toolbax ‘Petercorke’

11

First we define a point (3, 2,1) relative to the world frame which is a column vector and add it to the plot

P = [3 ; 2 ; 1]

P =

 3

 2

 1

Here we are describing the position of a point in 3D space by using following command

>> plot3(P(1), P(2), P(3), '*');

We create a homogeneous transformation (4*4) using the function TRANSL, which is a translational matrix at

origin of a world frame having no change in its direction

>> T1 = transl(0, 0, 0)

T1 =

 1 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

which represents a translation of (0, 0, 0) with a rotation of 0°, where TRANSL(X, Y, Z) is an homogeneous

transform (4x4) representing a pure translation of X, Y and Z.

We can plot this, relative to the world coordinate frame, by

 >> trplot(T1, 'frame', '1', 'color', 'm')

The options TRPLOT plot a 3D coordinate frame specifies that the label for the frame is {1} and it is colour

magenta and this is shown in Fig.

12

We create another relative pose which has a displacement of (2, 1,5) and again with zero rotation according to

the world frame

And then plot a 3D coordinate frame specifies that the label for the frame is {2} and it is colour red

>> T2 = transl(2, 1, 5)

T2 =

 1 0 0 2

 0 1 0 1

 0 0 1 5

 0 0 0 1

>> axis([0 5 0 5]);

>> trplot(T2, 'frame', '2', 'color', 'r');

Here determine the coordinate of the point with respect to {1} & {2} respectively

>> P1 = T1 * [P ; 1]

P1 =

 3

 2

 1

 1

13

>> plot3(P1(1), P1(2), P1(3), '*', 'color', 'b');

The same point P with respect to {2} is

>> P2 = T2 * [P ; 1]

P2 =

 5

 3

 6

 1

Next we have a plot of a body which is parallel to z-axis and 90o rotation in its x and y axes and has a position

of 5,3,2 units in x, y and z axes respectively

>> F1 = [0, -1, 0, 5; 1, 0, 0, 5; 0, 0, 1, 1 ; 0, 0, 0, 1]

F1 =

 0 -1 0 5

 1 0 0 5

 0 0 1 1

 0 0 0 1

>> trplot(F1)

14

Now we expect the change in its position only according to the given translational matrix {1} & {2} respectively

>> F2 = T1 * F1

F2 =

 0 -1 0 5

 1 0 0 5

 0 0 1 1

 0 0 0 1

>> trplot(F2)

The same frame F1 with respect to {2} is

>> F3 = T2 * F1

F3 =

 0 -1 0 7

 1 0 0 6

 0 0 1 6

 0 0 0 1

>> trplot(F3)

15

Tasks:
1. Run the startup_rvc command and provide the output message generating on MATLAB terminal.

2. Initially a robotic base is at the coordinate (1,2,0) now your task is to move the base to a new location when it

translated to dx=5, dy= 2 and dz=0.

3. Now move the initial located base representing by a frame F1 in which its local x-axis is parallel to z-axis and

move it to a new location where dx=2, dy=3 and dz=4

16

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: ___EL-422 Robotics__________________________________

Laboratory Experiment No. __01_______ Date: ___________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of software

menu (syntax,

components, commands,

tools, layout etc.).

Can’t identify

software menus.

Rarely

identifies

software

menus.

Occasionally

identifies

software

menus.

Able to

identify

software

menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools, layout)

efficiently.

Can’t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands, tools,

layout)

Adherence to safety

procedures and handling

of equipment (computing

unit, peripheral devices,

and other equipment in

lab).

Doesn’t handle

equipment with

required care and

safety.

Rarely handles

equipment

with required

care and

safety.

Occasionally

handles

equipment

with required

care and

safety.

Often handles

equipment

with required

care and

safety.

Handles

equipment with

required care and

safety.

Ability to troubleshoot

software errors

(detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot

the errors

Occasionally

able to

troubleshoot

the errors

Often able to

troubleshoot

the errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to

perform the

analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

17

Lab Experiment #02

Objective:

Compute the rotational changes during the simulation of stationary robot in the robotics toolbox.

Theory:

Representing Orientation in 3-Dimensions:

Any two independent orthonormal coordinate frames can be related by a sequence of rotations (not more than

three) about coordinate axes, where no two successive rotations may be about the same axis. The following

figures are showing the two different industrial manipulators which are equipped with rotating joints and can

perform different industrial operations [1].

Orthonormal Rotation Matrix

Just as for the 2-dimensional case we can represent the orientation of a coordinate frame by its unit vectors

expressed in terms of the reference coordinate frame. Each unit vector has three elements and they form the

columns of a 3 × 3 orthonormal matrix ARB

which rotates a vector defined with respect to frame {B} to a vector with respect to {A}.

Procedure:

We are using MATLAB 2019(a) for performing these operations, by using MATLAB Toolbax ‘Peter Corke’

First we are defining a point (3, 2, 1) relative to the world frame which is a column vector and add it to the plot

P = [3 ; 2 ; 1]

P =

 3

 2

 1

Now we can describe a vector P, describing position of a point in 3D space by using following command

18

>> plot3(P(1), P(2), P(3), '*');

Now we are creating an orthonormal rotation matrix (3x3) which is showing the rotation about the x-axis of the

reference frame

>> Rx = rotx(pi/2)

Rx =

 1 0 0

 0 0 -1

 0 1 0

>> trplot(Rx)

>> tranimate(R)

TRANIMATE animate a 3D coordinate frame

Now Px is the rotated frame multiplied by the rotation matrix in the reference frame

>> Px = Rx * P

Px =

 3

 -1

 2

19

Similarly we have a rotation about the y-axis

>> Ry = roty(pi/2)

Ry =

 0 0 1

 0 1 0

 -1 0 0

>> trplot(Ry)

And in last we have a rotation about the z-axis

>> Rz = rotz(pi/4)

Rz =

 0.7071 -0.7071 0

 0.7071 0.7071 0

 0 0 1.0000

>> trplot(Rz)

20

Next we have a plot of a body which is 0o rotated about x- axis and it has a position of 3,5,7 units in x, y and z

axes respectively

>> F1 = [1, 0, 0, 3; 0, 1, 0, 5; 0, 0, 1, 7; 0, 0, 0, 1]

F1 =

 1 0 0 3

 0 1 0 5

 0 0 1 7

 0 0 0 1

>> trplot(F1)

Here we have a frame which has some rotation in y-axis and trotx is a homogeneous transformation (4x4)

representing a rotation % of theta radians about the x-axis.

>> T = trotz(pi/2) * F1

T =

 0 -1 0 -5

 1 0 0 3

 0 0 1 7

 0 0 0 1

>> trplot(T)

21

>> T1 = trotx(pi/2) * F1

T =

 1 0 0 3

 0 0 -1 -7

 0 1 0 5

 0 0 0 1

>> trplot(T1)

>> T2 = troty(pi/2) * F1

T2 =

 0 0 1 7

 0 1 0 5

 -1 0 0 -3

 0 0 0 1

>> trplot(T2)

22

At this time we already have a new frame with 90 degree rotation about x-axis, now we are multiplying it by the

rotation about y-axis to achieve a new location

>> F2 = troty(pi/4) * F1

F2 =

 0.7071 0.4999 0.4999 7.0711

 0 0.7070 -0.7070 5.0000

 -0.7071 0.4999 0.4999 2.8284

 0 0 0 1.0000

>> trplot(F2)

Combining Translation and Orientation

Combine transformation consist of number of successive translations and rotations about a fixed reference frame

axes. Any transformation can be resolved into a set of translations and rotations in a particular order.

We return now to representing relative pose in three dimensions, the position and orientation change, between

two coordinate frames. We have discussed several different representations of orientation, and we need to

combine this with translation, to create a tangible representation of relative pose. The two most practical

representations are: the quaternion vector pair and the 4 × 4 homogeneous transformation matrix.

23

The 4 × 4 homogeneous transformation is very commonly used in robotics and computer vision, is supported by

the Toolbox and will be used throughout this book as a concrete representation of 3-dimensional pose. The

Toolbox has many functions to create homogeneous transformations.

Here we are compounding 2 rotations

rotx(pi/2) * roty(pi/2)

ans =

 0 0 1

 1 0 0

 0 1 0

>> trplot(ans)

we can demonstrate composition of transforms by

>> T = transl(1, 0, 0) * trotx(pi/2) * transl(0, 1, 0)

T =

 1 0 0 1

 0 0 -1 0

 0 1 0 1

 0 0 0 1

>> trplot(T)

24

Here we are finding a coordinates of the point relative to the reference frame which is currently at the point P

(7,3,1), which is subjected to a reference frame by the rotation of 90o about z-axis , translation of [4,-3,7] and a

rotation of 90o about y-axis

>> T = troty(pi/2) * transl (4, -3, 7) * trotz(pi/2) * [7;3;1;1]

T =

 8

 4

 -1

 1

Next we have a plot of a body which is 0o rotated about x- axis and it has a position of 3,5,7 units in x, y and z

axes respectively

>> F1 = [1, 0, 0, 3; 0, 1, 0, 5; 0, 0, 1, 7; 0, 0, 0, 1]

F1 =

 1 0 0 3

 0 1 0 5

 0 0 1 7

 0 0 0 1

>> trplot(F1)

Here we are generating a new frame by providing some rotation and translational change to the previous frame

F2 = trotz(pi/2) * transl (4, -3, 7) * F1

T =

25

 0 -1 0 -2

 1 0 0 7

 0 0 1 14

 0 0 0 1

>> trplot(F2)

Tasks:

1. Initially a robot’s component is at point P (7,3,1). Now move it to a new location by giving it a rotation of 90o

about the z-axis.

2. Initially a robot’s component is at point P (7,3,1). Now move it to a new location by giving it a rotation of 90o

about the z-axis, followed by a rotation of 90o about x-axis,

3. Initially a robot’s component is at point P (7,3,1). Now move it to a new location by giving it a rotation of 90o

about the z-axis, followed by a rotation of 90o about x-axis, followed by a translation of [4, -3, 7].

4. In this case assume the same point P (7,3,1). But the transformation is performed in different order. First give it a

rotation of 90o about the z-axis, followed by a translation of [4, -3, 7], and in last followed by a rotation of 90o

about y-axis

5. Initially a frame is at point P (2,3,8) and having rotation of 90O in its x-axis, now repeat the task#4 for it.

6. Use tranimate to show translation and rotational motion about various axes.

7. Animate rotation about all axes.

26

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: ___EL-422 Robotics__________________________________

Laboratory Experiment No. __02_______ Date: ___________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of software

menu (syntax,

components, commands,

tools, layout etc.).

Can’t identify

software menus.

Rarely

identifies

software

menus.

Occasionally

identifies

software

menus.

Able to

identify

software

menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools, layout)

efficiently.

Can’t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands, tools,

layout)

Adherence to safety

procedures and handling

of equipment (computing

unit, peripheral devices,

and other equipment in

lab).

Doesn’t handle

equipment with

required care and

safety.

Rarely handles

equipment

with required

care and

safety.

Occasionally

handles

equipment

with required

care and

safety.

Often handles

equipment

with required

care and

safety.

Handles

equipment with

required care and

safety.

Ability to troubleshoot

software errors

(detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot

the errors

Occasionally

able to

troubleshoot

the errors

Often able to

troubleshoot

the errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to

perform the

analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

27

Lab Experiment # 03

Objective:

Use the kinematic principle for a 2 DOF industrial manipulator and to simulate in the toolbox.

Theory:

 Kinematics is the branch of classical mechanics that describes the motion of points, bodies (objects) and systems

of bodies (groups of objects) without consideration of the causes of motion. It is the study of the position, velocity

and acceleration, and all higher order derivatives of the position variables

 Forward kinematics refers to the use of the kinematic equations of a robot to compute the Cartesian location and

orientation of robotic arm by using known joints data parameters. It is the solution gives the coordinate frame, or

pose, of the last link

 Forward kinematics (for a robot arm) takes as input joint angles and calculates the Cartesian position and

orientation of the end effector. It is the problem of solving the Cartesian position and orientation of the end-effector

given knowledge of the kinematic structure and the joint coordinates. The kinematic structure of a serial-link

manipulator can be succinctly described in terms of DenavitHartenberg parameters. Within the Toolbox the

manipulator’s kinematics are represented in a general way by a dh matrix which is given as the first argument to

Toolbox kinematic functions. The dh matrix describes the kinematics of a manipulator using the standard Denavit-

Hartenberg conventions, where the link and joint parameters may be summarized as:

theta: link angle

d: link offset

 alpha: link twist

 a: link length

 offset: joint coordinate offset

 name: joint coordinate name

 flip: joint moves in opposite direction

 Typical robots are serial-link manipulators comprising a set of bodies, called links, in a chain, connected by joints.

For a manipulator with n joints, there are n+1 links

 A seriallink manipulator comprises a chain of mechanical links and joints. Each joint can move its outward

neighbouring link with respect to its inward neighbour. One end of the chain, the base, is generally fixed and the

other end is free to move in space and holds the tool or end-effector.

 A serial-link manipulator comprises a set of bodies, called links, in a chain and connected by joints. Each joint has

one degree of freedom, either translational (a sliding or prismatic joint) or rotational (a revolute joint). Motion of

the joint changes the relative angle or position of its neighbouring links.

 Denavit and Hartenberg proposed a matrix method of assigning coordinate systems to each link

Procedure:

We are creating a 2-link robot shown in given figure:

28

A Link object holds all information related to a robot joint and link such as kinematics parameters, rigid-body

inertial parameters, and motor and transmission parameters. First we are creating link 1 by the name of L(1)

>> L(1) = Link([0 0 1 0])

L =

Revolute(std): theta=q, d=0, a=1, alpha=0, offset=0

Now we are generating a link transform matrix by a 4 × 4 homogeneous transformation with a Denavit-

Hartenberg parameter theta (revolute)

>> L.A(0)

ans =

 1 0 0 1

 0 1 0 0

 0 0 1 0

 0 0 0 1

Here it indicates the number of links in kinematic parameter

>> L.a

ans =

 1

It is a link transform matrix by a 4 × 4 homogeneous transformation with a Denavit-Hartenberg parameter theta

(revolute)

>> L.A(pi/2)

ans =

 0 -1 0 0

 1 0 0 1

 0 0 1 0

 0 0 0 1

29

This same can be done by defining a link which contain an offset

>> L.offset = pi/2

L =

Revolute(std): theta=q, d=0, a=1, alpha=0, offset=1.5708

Now again generate its transform matrix

>> L.A(0)

ans =

 0 -1 0 0

 1 0 0 1

 0 0 1 0

 0 0 0 1

Here we are creating a link 2

>> L(2) = Link([0 0 1 0])

L =

Revolute(std): theta=q1 d=0 a=1 alpha=0 offset=1.571

Revolute(std): theta=q2 d=0 a=1 alpha=0 offset=0

A concrete class that represents a serial-link arm type robot. Each link and joint in the chain is described by a

Link-class object using Denavit-Hartenberg parameters, where “two_link” is a variable name and constructing a

serial link for L; L (1) & L (2)

>> two_link = SerialLink(L, 'name', 'two link')

two_link =

two link:: 2 axis, RR, stdDH, slowRNE

+---+-----------+-----------+-----------+-----------+-----------+

| j | theta | d | a | alpha | offset |

+---+-----------+-----------+-----------+-----------+-----------+

| 1| q1| 0| 1| 0| 1.5708|

| 2| q2| 0| 1| 0| 0|

And here we are plotting it at 0-axes by using

>> two_link.plot([0 0])

Here the first element of matrix defining the link 1 and the second element is defing the link 2

30

Here its pose changes,

>> two_link.plot([0 -pi/2])

Here its pose changes,

>> two_link.plot([pi/2 -pi/2])

This provides a concise description of the robot. We see that it has 2 revolute joints as indicated by the structure

string 'RR', it is defined in terms of standard DenavitHartenberg parameters, that gravity is acting in the default

z-direction. The kinematic parameters of the link objects are also listed and the joint variables are shown as

variables q1 and q2. We have also assigned a name to the robot which will be shown whenever the robot is

displayed graphically. The script MDL_TWOLINK is a script that creates the workspace creating a SerialLink

31

object named twolink which describes the kinematic and dynamic characteristics of a simple planar 2-link

mechanism moving in the xz-plane, it experiences gravity loading.

>> mdl_twolink

Obtain the number of joints,

>> twolink.n

ans =

 2

Now this returns a vector of Link objects comprising the robot,

>> links = twolink.links

links =

Revolute(std): theta=q1 d=0 a=1 alpha=0 offset=0

Revolute(std): theta=q2 d=0 a=1 alpha=0 offset=0

Now we can put the robot arm to work. The forward kinematics is computed using the fkine method where fkine

is forward kinematics

>> twolink.fkine([0 0])

ans =

 1 0 0 2

 0 1 0 0

 0 0 1 0

 0 0 0 1

The method returns the homogenous transform that represents the pose of the second link coordinate frame of

the robot

>> twolink.fkine([pi/4 -pi/4])

ans =

 1 0 0 1.707

 0 1 0 0.707

 0 0 1 0

 0 0 0 1

The robot can be visualized graphically, the pose (0, 0);

>> twolink.plot([0 0])

32

Here the pose (pi/4 -pi/4)

>> twolink.plot([pi/4 -pi/4])

Tasks:
1. For the simple two link manipulator shown in above figure, consider a1=a2=1, and the joint angle variations for

both joints θ1=pi and θ2=pi/2.

2. For a serial link manipulator generate a 3 link robotic arm at angle (0, pi/2, –pi/2)

33

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: ___EL-422 Robotics__________________________________

Laboratory Experiment No. __03_______ Date: ___________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of software

menu (syntax,

components, commands,

tools, layout etc.).

Can’t identify

software menus.

Rarely

identifies

software

menus.

Occasionally

identifies

software

menus.

Able to

identify

software

menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools, layout)

efficiently.

Can’t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands, tools,

layout)

Adherence to safety

procedures and handling

of equipment (computing

unit, peripheral devices,

and other equipment in

lab).

Doesn’t handle

equipment with

required care and

safety.

Rarely handles

equipment

with required

care and

safety.

Occasionally

handles

equipment

with required

care and

safety.

Often handles

equipment

with required

care and

safety.

Handles

equipment with

required care and

safety.

Ability to troubleshoot

software errors

(detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot

the errors

Occasionally

able to

troubleshoot

the errors

Often able to

troubleshoot

the errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to

perform the

analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

34

Lab Experiment # 04

Objective:

Illustrate the inverse kinematic principle of a PUMA industrial manipulator and to test in toolbox

Theory:

 Kinematics is the branch of classical mechanics that describes the motion of points, bodies (objects) and systems

of bodies (groups of objects) without consideration of the causes of motion. It is the study of the position, velocity

and acceleration, and all higher order derivatives of the position variables.

 Inverse kinematics is the use of kinematic equations to determine the motion of a robot to reach a desired position

or calculating joints data by using known location and orientation of robotic arm.

 In computer animation and robotics, inverse kinematics is the mathematical process of calculating the variable

joint parameters needed to place the end of a kinematic chain, such as a robot manipulator or animation character's

skeleton, in a given position and orientation relative to the start of the chain.

 We have shown how to determine the pose of the end-effector given the joint coordinates. A problem of real

practical interest is the inverse problem: given the desired pose of the end-effector what are the required joint

coordinates? For example, if we know the Cartesian pose of an object, what joint coordinates does the robot need

in order to reach it? This is the inverse kinematics problem. In general, this solution is non-unique, and for some

classes of manipulator no closed-form solution exists.

 Inverse kinematics is the problem of finding the robot joint coordinates, given a homogeneous transform

representing the last link of the manipulator. It is very useful when the path is planned in Cartesian space, for

instance a straight-line path as shown in the trajectory demonstration.

 With the help of inverse kinematics, we will be able to determine the value of each joint in order to place the robot

at a desired position and orientation.

Procedure:

We will explore inverse kinematics using the Puma robot model, First generate the transform corresponding to

a particular joint coordinate, q, using forward kinematics

Now

>> mdl_puma560

>> q = [0 0 0 0 0 0]

q =

 0 0 0 0 0 0

>> T = p560.fkine(q)

T =

 1 0 0 0.4521

 0 1 0 -0.15

 0 0 1 0.4318

 0 0 0 1

>> qi = p560.ikine(T)

qi =

35

 0 0 0 0 0 0

>> p560.plot (qi)

Now

q = [0 0 0 0 0 pi/4]

q =

 0 0 0 0 0 0.7854

>> T = p560.fkine(q)

T =

 0.7071 -0.7071 0 0.4521

 0.7071 0.7071 0 -0.15

 0 0 1 0.4318

 0 0 0 1

>> qi = p560.ikine(T)

qi =

 0.0000 -0.0000 0.0000 0.3918 -0.0000 0.3936

>> p560.plot (qi)

36

Now

>> q = [0 0 0 0 pi/4 0]

q =

 0 0 0 0 0.7854 0

>> T = p560.fkine(q)

T =

 0.7071 0 -0.7071 0.4521

 0 1 0 -0.15

 0.7071 0 0.7071 0.4318

 0 0 0 1

>> qi = p560.ikine(T)

qi =

 0.0000 -0.0000 0.0000 -0.0000 0.7854 0.0000

>> p560.plot (qi)

Now

>> q = [0 0 0 pi/4 0 0]

37

q =

 0 0 0 0.7854 0 0

>> T = p560.fkine(q)

T =

 0.7071 -0.7071 0 0.4521

 0.7071 0.7071 0 -0.15

 0 0 1 0.4318

 0 0 0 1

>> qi = p560.ikine(T)

qi =

 0.0000 -0.0000 0.0000 0.3918 -0.0000 0.3936

>> p560.plot (qi)

Now

>> q = [0 0 pi/4 0 0 0]

q =

 0 0 0.7854 0 0 0

>> T = p560.fkine(q)

T =

 0.7071 0 -0.7071 0.1408

 0 1 0 -0.15

 0.7071 0 0.7071 0.3197

 0 0 0 1

>> qi = p560.ikine(T)

38

qi =

 -0.0000 -0.0000 0.7854 0.0207 0.0000 -0.0207

>> p560.plot (qi)

Now

>> q = [0 pi/4 0 0 0 0]

q =

 0 0.7854 0 0 0 0

>> T = p560.fkine(q)

T =

 0.7071 0 -0.7071 0.01435

 0 1 0 -0.15

 0.7071 0 0.7071 0.625

 0 0 0 1

>> qi = p560.ikine(T)

qi =

 -0.0000 0.7854 0.0000 -0.0055 -0.0000 0.0055

>> p560.plot (qi)

39

Now

>> q = [pi/4 0 0 0 0 0]

q =

 0.7854 0 0 0 0 0

>> T = p560.fkine(q)

T =

 0.7071 -0.7071 0 0.4258

 0.7071 0.7071 0 0.2136

 0 0 1 0.4318

 0 0 0 1

>> qi = p560.ikine(T)

qi =

 0.7854 -0.0000 0.0000 0.0061 -0.0000 -0.0061

>> p560.plot (qi)

Now

>> mdl_puma560

>> q = [0 0 0 0 pi pi]

40

q =

 0 0 0 0 3.1416 3.1416

>> T = p560.fkine(q)

T =

 1 0 0 0.4521

 0 -1 0 -0.15

 0 0 -1 0.4318

 0 0 0 1

>> qi = p560.ikine(T)

qi =

 0 0 0 0 0 0

>> p560.plot (qi)

Now

>> q = [pi/4 0 0 0 pi/4 pi/4]

q =

 0.7854 0 0 0 0.7854 0.7854

>> T = p560.fkine(q)

T =

 -0.1464 -0.8536 -0.5000 0.4258

 0.8536 0.1464 -0.5000 0.2136

 0.5000 -0.5000 0.7071 0.4318

 0 0 0 1

41

>> qi = p560.ikine(T)

qi =

 0.7854 -0.0000 0.0000 -0.0000 0.7854 0.7854

>> p560.plot (qi)

Now

>> q = [pi/4 0 0 0 pi/4 0]

q =

 0.7854 0 0 0 0.7854 0

>> T = p560.fkine(q)

T =

 0.5000 -0.7071 -0.5000 0.4258

 0.5000 0.7071 -0.5000 0.2136

 0.7071 0 0.7071 0.4318

 0 0 0 1

>> qi = p560.ikine(T)

qi =

 0.7854 -0.0000 0.0000 -0.0000 0.7854 0.0000

>> p560.plot (qi)

42

Now

>> mdl_puma560

At the nominal joint coordinates (The wrist angles are defined relative to a nominal posture of the forearm

and hand: the nominal posture is the forearm hanging straight down while the palm is parallel to the

sagittal plane and facing towards the body)

>> qn

qn =

 0 0.7854 3.1416 0 0.7854 0

the end-effector pose is

>> T = p560.fkine(qn)

T =

 0 0 1 0.5963

 0 1 0 -0.1501

 -1 0 0 -0.01435

 0 0 0 1

Now the inverse kinematic procedure for any specific robot can be derived symbolically and in general an

efficient closed-form solution can be obtained. However we are given only a generalized description of the

manipulator in terms of kinematic parameters so an iterative solution will be used. The procedure is slow, and

the choice of starting value affects search time and the solution found, since in general a manipulator may have

several poses which result in the same transform for the last link. The starting point for the first point may be

specified, or else it defaults to zero (which is not a particularly good choice in this case)

We use the method ikine (inverse kinematics using iterative numerical method) to compute the general inverse

kinematic solution, which is different to the original value (qn) but does result in the correct tool pose

>> qi = p560.ikine(T)

qi =

43

 -0.0000 -0.8335 0.0940 0.0000 -0.8312 -0.0000

>> p560.fkine(qi)

ans =

 0.0000 -0.0000 1 0.5963

 -0.0000 1 0.0000 -0.1501

 -1 -0.0000 0.0000 -0.01435

 0 0 0 1

Plotting the pose

>> p560.plot (qi)

OR

>>mdl_puma560

>>q = [0 -pi/4 -pi/4 0 pi/8 0]

q =

 0 -0.7854 -0.7854 0 0.3927 0

>>T = p560.fkine(q)

T =

 0.3827 0 0.9239 0.7371

 0 1 0 -0.1501

 -0.9239 0 0.3827 -0.3256

 0 0 0 1

>>qi = p560.ikine(T)

44

>>qi

qi =

 0.0000 -0.7854 -0.7854 0.0000 0.3927 -0.0000

and the result is the same as the original set of joint angles

>>q

q =

 0 -0.7854 -0.7854 0 0.3927 0

>> p560.plot (qi)

shows clearly that ikine has found the elbow-down configuration

Tasks:
1. Do the example 2.23 of the book, “Introduction to Robotics by Saeed B. Niku” [1] with 3 DOF and then plot the

result.

2. As per the example 2.28 mentioned in the book (page number 88), confirm results of the inverse kinematics by

using the given equation.

45

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: ___EL-422 Robotics__________________________________

Laboratory Experiment No. __04_______ Date: ___________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of software

menu (syntax,

components, commands,

tools, layout etc.).

Can’t identify

software menus.

Rarely

identifies

software

menus.

Occasionally

identifies

software

menus.

Able to

identify

software

menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools, layout)

efficiently.

Can’t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands, tools,

layout)

Adherence to safety

procedures and handling

of equipment (computing

unit, peripheral devices,

and other equipment in

lab).

Doesn’t handle

equipment with

required care and

safety.

Rarely handles

equipment

with required

care and

safety.

Occasionally

handles

equipment

with required

care and

safety.

Often handles

equipment

with required

care and

safety.

Handles

equipment with

required care and

safety.

Ability to troubleshoot

software errors

(detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot

the errors

Occasionally

able to

troubleshoot

the errors

Often able to

troubleshoot

the errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to

perform the

analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

46

Lab Experiment # 05

Objective:

Determine the translational changes during the simulation of moving robot in the robotics toolbox

Theory:

A mobile robot is a machine controlled by software that uses sensors and other technology to identify its

surroundings and move around its environment. In other words, robot having capability to change its location is

known as moving robot [2].

.

Classifications of mobile robots:

A simple moving robot is comprised of following elements:

1. Manipulator:

Just like the human arm, the robot consists of what is called a manipulator having several joints and links.

2. End effector:

The base of the manipulator is fixed to base support and at its other free end, the End effector is attached.

3. The Locomotion Device:

For the robot the power for the movement (locomotion) is provided by the motors. The motors used for providing

locomotion in robots are of three types depending on the source of energy: Electric, Hydraulic or Pneumatic.

4.The Controller:

The digital computer (both the hardware and the software) acts as a controller to the robot. The controller

functions in a manner analogous to the human brain. With the help of this controller, the robot is able to carry

out the assigned tasks. The controller directs and controls the movement of the Manipulator and the End effector.

In other words, the controller controls the robot.

5.The Sensors:

Without the data supplied by the sense organs, the controller (the computer) of the robot cannot do any

meaningful task, if the robot is not with a component analogous to the sense organs of the human body. Thus,

47

the fifth and the most important component of the robot is the set of sensors. Sensors are nothing but measuring

instruments which measures quantities such as position, velocity, force, torque, proximity, temperature, etc.

Examples of different environment mobile robots include:

 Polar robots that are designed to traverse icy, uneven environments.

 Aerial robots, also known as unmanned aerial vehicles (UAVs) or drones, which fly through the air.

 Land or home robots, or unmanned ground vehicles (UGVs), that navigate on dry land or within houses.

 Underwater robots or autonomous underwater vehicles (AUVs) that can direct themselves and travel through

water.

 Delivery and transportation mobile robots that are designed to move materials and supplies around a work

environment.

Types of mobile robots according to their drives:

1. Differential Drive/Differential wheel:

It is a mobile robot whose movement is based on two separately driven wheels placed on either side of the robot

body. It can thus change its direction by varying the relative rate of rotation of its wheels and hence does not

require an additional steering motion.

To balance the robot, additional wheels or casters may be added. The concept is simple; Velocity difference

between two motors drive the robot in any required path and direction. Hence the name “Differential”

drive. Differential wheeled robot can have two independently driven wheels fixed on a common horizontal axis

or three wheels where two independently driven wheels and a roller ball or a castor attached to maintain

equilibrium. To balance the robot, additional wheels or casters may be added.

https://internetofthingsagenda.techtarget.com/definition/drone
https://en.wikipedia.org/wiki/Mobile_robot
https://en.wikipedia.org/wiki/Wheel

48

There are three fundamental cases which can happen in a

differential wheeled robot:

I. If the angular velocities are identical in terms of

both values and direction, i.e. if both the wheels

are driven at the same speed and same direction

(either clockwise or anticlockwise) then the robot

tends to spin around its vertical axis. This

complete turn capability is one of the greatest

advantages of a differentially driven robot (a.k.a

zero radius turn).

II. If the angular velocities are identical in terms of

values and opposite in direction, i.e. if both the

wheels are driven in the same speed but in the

opposite direction (One clockwise and other

anticlockwise) then the robot is more likely to

follow a linear path, either forward or backward

based on the motors spin.

III. If the angular velocities are different in terms of

values (same or different direction), i.e. if the

wheels are driven at different speeds in the same

direction or opposite direction, then the robot makes a curve motion. Lastly, if one of the wheels rotate

and the other stays still then the robot almost makes a 90° turn. Manipulating the drive speed and

direction can give some interesting drive paths.

One of the major disadvantages of this control is that the robot does not drive as expected. It neither

drives along a straight line nor turn exactly at expected angles, especially when we use DC motors. This

is due to difference in the number of rotations of each wheel in a given amount of time.

2. Skid steering

It is another driving mechanism implemented on vehicles with either tracks or wheels which uses differential

drive concept. Most common Skid steered vehicles are tracked tanks and bulldozers. This method engages one

side of the tracks or wheels and turning is done by generating differential velocity at opposite side of a vehicle

as the wheels or tracks in the vehicle are non-steerable.

http://www.robotplatform.com/knowledge/Classification_of_Robots/tracked_robots.html
http://www.robotplatform.com/knowledge/Classification_of_Robots/Types_of_robot_wheels.html

49

3. Tricycle Drive:

Tricycle robot is designed with a front steering wheel controlled by a motor. The two rear wheels are attached

to a common axle driven by a single motor with two degrees of freedom (either forwards or reverse). The

disadvantage is that they cannot spin like a differential drive robot and does not have a 90° turn due to their

limited radius of curvature.

4. Ackermann Steering:

One of the most common configurations found in cars is Ackerman steering which mechanically coordinates the

angle of two front wheels which are fixed on a common axle used for steering and two rear wheels fixed on

another axle for driving.

The advantage in this design is increased control, better stability and maneuverability on road, less slippage and

less power consumption.

50

Procedure:

We are using MATLAB 2021(b) alongwith ‘Peter Corke Robotics Toolbox’ to perform the simulations of

moving robot (triangle). To perform this task we will provide translation and rotation to the robot and will

observe the result.

Initially the robot is resting at origin

axis([-5 5 -5 5]);

grid on

x0=[0;0;0];

plot_vehicle(x0, 'r', 'retain');

Performing translation on x-axis and y-axis respectively:

F = transl(x0(1)+4, x0(2)+3, 0);

x = F(1,1);

A=F(1,4);

B=F(2,4);

Y=acos(x);

x1p=[A;B;Y];

plot_vehicle(x1p, 'r', 'retain');

51

Upon rotation of 90degrees:

FNEW=F*trotz(pi/2);

x = FNEW(1,1);

A=FNEW(1,4);

B=FNEW(2,4);

C=FNEW(3,4);

Y=acos(x);

x2p=[A;B;Y];

plot_vehicle(x2p, 'r', 'retain');

52

Code:

clear all; %Clear removes all variables from the current workspace, releasing them from system memory.

close all; %Close one or more figures.

clc %Clears all the text from the Command Window

axis([-10 20 -10 20]); %Axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis of the current axes

grid on %Grid on displays the major grid lines for the current axes

hold on %Retains the current plot and certain axes properties so that subsequent graphing commands

add to the existing graph

for i=2:2:10 %For loop to repeat specified number of times.

x0=[i;0;0]; % The robot will travel along x-axis

plot_vehicle(x0, 'r', 'retain'); %PLOT_VEHICLE(X,OPTIONS) draws an oriented triangle to represent the pose

end

P = [x0(1); x0(2) ; 0;1]; %extract single value out of a matrix using vectors

F = transl(x0(1), x0(2), 0); %T = transl(x, y, z) is an SE(3) homogeneous transform (4x4) representing a pure

translation of x, y and z.

FNEW=F*trotz(pi/2) %T = trotz(theta) is a homogeneous transformation (4x4) representing a rotation of

theta radians about the z-axis

x = FNEW(1,1) %Indexing into a matrix is a means of selecting a subset of elements from the matrix, x

will conatin an angle

A=FNEW(1,4) % A will contain the position of x-axis

B=FNEW(2,4) %B will contain the position of y-axis

C=FNEW(3,4) %C will contain the position of z-axis

Y=acos(x) %Converting angle into radians

x1p=[A;B;Y] % Forming the new vector point that has position in x and y axis and angle at z-axis

plot_vehicle(x1p, 'r', 'retain'); %PLOT_VEHICLE(X,OPTIONS) draws an oriented triangle to a new position

with respect to its angle

for j=B:2:10 %For loop to repeat specified number of times.

 x2=[A;B+j;Y] % The robot will travel along y-axis

plot_vehicle(x2, 'r', 'retain'); %PLOT_VEHICLE(X,OPTIONS) draws an oriented triangle to a new position

without changing the angle

end

53

Tasks:

1. Write a simple code to bring the moving robot back to its origion from (5,5,0)

2. Consider result of exercise 1 as the initial position of the robot, write a simple code to perform translation of

(x0+dx)= 5 and (y0+dy)=3 , after reaching the final destination robot should rotate at 180 Degrees.

3. Perform a motion forming a triangular shape having same origin and destination and displacement of 20 steps

atleast.

54

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: ___EL-422 Robotics__________________________________

Laboratory Experiment No. __05_______ Date: ___________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of software

menu (syntax,

components, commands,

tools, layout etc.).

Can’t identify

software menus.

Rarely

identifies

software

menus.

Occasionally

identifies

software

menus.

Able to

identify

software

menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools, layout)

efficiently.

Can’t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands, tools,

layout)

Adherence to safety

procedures and handling

of equipment (computing

unit, peripheral devices,

and other equipment in

lab).

Doesn’t handle

equipment with

required care and

safety.

Rarely handles

equipment

with required

care and

safety.

Occasionally

handles

equipment

with required

care and

safety.

Often handles

equipment

with required

care and

safety.

Handles

equipment with

required care and

safety.

Ability to troubleshoot

software errors

(detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot

the errors

Occasionally

able to

troubleshoot

the errors

Often able to

troubleshoot

the errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to

perform the

analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

55

Lab Experiment # 06

Objective:

Examine the concept of localization of a mobile robot and testing the movement of a robot using MATLAB

based programming.

Theory:

A process used to estimate the location of a robot in the world is known as localization and to calculate

localization we will use Kalman Filter (KF) [3].

A Kalman Filter is an algorithm that takes data inputs from multiple sources and estimates unknown variables,

despite a potentially high level of signal noise. Often used in navigation and control technology, the Kalman

Filter has the advantage of being able to predict unknown values more accurately than if individual predictions

are made using singular methods of measurement.

It has two steps:

1. Prediction step: the next step state of the system is predicted given the previous measurements

2. Update step: the current state of the system is estimated given the measurement at that time step

The terms “prediction” and “update” are often called “propagation” and “correction,” respectively.

Basics

Here are the most important concepts you need to know:

 Kalman Filters are discrete. That is, they rely on measurement samples taken between repeated but

constant periods of time.

 Kalman Filters are recursive. This means its prediction of the future relies on the state of the present

(position, velocity, acceleration, etc) as well as a guess about what any controllable parts tried to do to

affect the situation (such as a rudder or steering differential).

 Kalman Filters work by making a prediction of the future, getting a measurement from reality, comparing

the two, moderating this difference, and adjusting its estimate with this moderated value.

 The more you understand the mathematical model of your situation, the more accurate the Kalman filter's

results will be.

 If your model is completely consistent with what's actually happening, the Kalman filter's estimate will

eventually converge with what's actually happening.

When you start up a Kalman Filter, these are the things it expects:

 The mathematical model of the system, represented by matrices A, B, and H.

 An initial estimate about the complete state of the system, given as a vector x.

 An initial estimate about the error of the system, given as a matrix P.

 Estimates about the general process and measurement error of the system, represented by matrices Q and

R.

During each time step, you are expected to give it the following information:

 A vector containing the most current control state (vector "u"). This is the system's guess as to what it

did to affect the situation (such as steering commands).

 A vector containing the most current measurements that can be used to calculate the state (vector "z").

After the calculations, you get the following information:

 The most current estimate of the true state of the system.

https://deepai.org/machine-learning-glossary-and-terms/estimator

56

 The most current estimate of the overall error of the system

The KF algorithm:

The equations are here for exposition and reference [3]. You aren't expected to understand the equations on the

first read. The Kalman Filter is like a function in a programming language: it's a process of sequential equations

with inputs, constants, and outputs. Here we have color-coded the filter equations to illustrate which parts are

which. If you are using the Kalman Filter like a black box, you can ignore the gray intermediary variables. BLUE

= inputs, ORANGE = outputs, BLACK = constants, GRAY = intermediary variables

Inputs:

Un = Control vector. This indicates the magnitude of any control system's or user's control on the situation.

Zn = Measurement vector. This contains the real-world measurement we received in this time step.

Outputs:

Xn = Newest estimate of the current "true" state.

Pn = Newest estimate of the average error for each part of the state.

Constants:

A = State transition matrix. Basically, multiply state by this and add control factors, and you get a prediction of

the state for the next time step.

B = Control matrix. This is used to define linear equations for any control factors.

H = Observation matrix. Multiply a state vector by H to translate it to a measurement vector.

Q = Estimated process error covariance.

R = Estimated measurement error covariance.

Procedure:

Following is the Matlab coding for performing the localization:

clc;

clear;

close all;

57

% Basic KF-Localisation implementation

% true value =[x y theta]

true_val=[0 0 0;

 2 0 0;

 4 0 0;

 6 0 0;

 8 0 0;

 10 0 0];

odom=[0.02 -0.02 0;

 2.1 -0.12 -0.024;

 2.2 -0.14 -0.026;

 2.15 -0.11 -0.023;

 2.18 -0.13 -0.026;

 2.12 -0.11 -0.022]; % Odometric data (dx, dy, dtheta)

% range sensor data (range 1, bearing 1, range 2, bearing 2)

ranges=[13.42 0.463 13.42 -0.463;

 11.55 0.528 11.57 -0.526;

 9.98 0.643 9.99 -0.6334;

 8.46 0.779 8.45 -0.778;

 7.05 0.977 7.04 -0.978;

 6.33 1.251 6.41 -1.253]; %13.2;0.46;13.2;-0.46

sig_t1=0.2;sig_th1=6*pi/180;sig_fx=0.6;sig_fy=0.5; % variance for initialiasating P

sig_t=0.08;sig_th=5*pi/180; % variance for Q

sig_row=0.1;sig_alpha=2*pi/180; % variance for R

dx=0;dy=0;dth=0;

HA=0; HB=0; HC=0; HD=0; HE=0; HF=0;

X=[0;0;0]; %initialising X

P=[(sig_t1)^2 0.1 0.1;

 0.1 (sig_t1)^2 0.1;

 0.1 0.1 (sig_th1)^2];

A=[1 0 -dy;

 0 1 dx ;

 0 0 1]; % initialising A

Q=[(sig_t)^2 0.001 0.001 ;

 0.001 (sig_t)^2 0.001 ;

 0.001 0.001 (sig_th)^2]; %initialising Q

R=[(sig_row)^2 0;

58

 0 (sig_alpha)^2]; %initialising R

I=eye(3,3);

odomtx=0;

odomty=0;

odomt=[odomtx odomty];

XT=[X(1) X(2)];

% Plot

figure(1);

plot(XT(:,1),XT(:,2),'r--o'); %KF pose

hold on;

grid on;

hold on;

plot(odomt(:,1),odomt(:,2),'b--o'); %odometry pose

hold on;

plot(true_val(1,1),true_val(1,2),'g--o'); %actual pose

hold on;

plot(12,6,'g*','MarkerSize',10);%actual feature1 plot

hold on;

plot(12,-6,'g*','MarkerSize',10);%actual feature2 plot

hold on;

% KF localisation loop

for i=1:size(odom,1)

 dx = odom(i,1);

 dy = odom(i,2);

 dth = odom(i,3);

 odomtx=odomtx+dx;

 odomty=odomty+dy;

 odomt=[odomt;[odomtx odomty]];

 % Prediction

 A(1,3) = -dy;

 A(2,3) = dx;

 XP = X + [dx;dy;dth];

 PP = A * P * A' + Q;

 % Correction

 range1=ranges(i,1);

 bearing1=ranges(i,2);

 range2=ranges(i,3);

 bearing2=ranges(i,4);

 for j=1:2

 if j==1

59

 fx=12;

 fy=6;

 zn=[range1;bearing1];

 else

 fx=12;

 fy=-6;

 zn=[range2;bearing2];

 end

 dist=sqrt((XP(1)-fx)^2+(XP(2)-fy)^2);

 angp=atan2((fy-XP(2)),(fx-XP(1)))-XP(3);

 zp=[dist;angp];

 HA= (XP(1)-fx)/dist;

 HB= (XP(2)-fy)/dist;

 HD= (fy-XP(2))/dist^2;

 HE= (XP(1)-fx)/dist^2;

 H=[HA HB 0 ;

 HD HE -1];

 y= zn - zp;

 s= H * PP * H' + R;

 k= PP * H' * inv(s);

 XP= XP + k *y;

 PP= (I - k * H) * PP;

 end

 X = XP;

 P = PP;

 XT=[XT;[X(1) X(2)]];

 % plots

 plot(XT(:,1),XT(:,2),'r--o'); %KF pose

 hold on;

 plot(odomt(:,1),odomt(:,2),'b--o'); %odometry pose

 hold on;

 plot(true_val(1:i,1),true_val(1:i,2),'g--o'); %true pose

 hold on;

 plot(12,6,'r*','MarkerSize',10); %KF feature 1 location

 hold on;

 plot(12,-6,'r*','MarkerSize',10); %KF feature 2 location

 hold on;

end

asd=0;

60

Tasks:
1. Run the code once again by using following odometric values and provide your result.

odom=[0.02 -0.02 0;
 1.9 -0 -0.024;
 2.1 -0.17 -0.026;
 2.3 -0.15 -0.023;
 2.25 -0.09 -0.026;
 2.12 -0.10 -0.022];

2. Run the code by making your new range values for given feature locations (13, 5 and 13,-5) and provide your

result.

ranges=[];

61

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: ___EL-422 Robotics__________________________________

Laboratory Experiment No. __06_______ Date: ___________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of software

menu (syntax,

components, commands,

tools, layout etc.).

Can’t identify

software menus.

Rarely

identifies

software

menus.

Occasionally

identifies

software

menus.

Able to

identify

software

menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools, layout)

efficiently.

Can’t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands, tools,

layout)

Adherence to safety

procedures and handling

of equipment (computing

unit, peripheral devices,

and other equipment in

lab).

Doesn’t handle

equipment with

required care and

safety.

Rarely handles

equipment

with required

care and

safety.

Occasionally

handles

equipment

with required

care and

safety.

Often handles

equipment

with required

care and

safety.

Handles

equipment with

required care and

safety.

Ability to troubleshoot

software errors

(detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot

the errors

Occasionally

able to

troubleshoot

the errors

Often able to

troubleshoot

the errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to

perform the

analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

62

Lab Experiment # 07

Objective:

Derive the concept of simultaneous localization and mapping of a mobile robot and testing the working of a

robot using MATLAB based programming.

Theory:

The mobile robots performing any task, must acquire data from the environment. This data may be used to

measure the motion and location of rover. The level or nature of data varies with application. For example, a

simple toy type robot just detects the obstacle at front of it from suitable range, a line following robot detects

line on his path and try to follow that line. However, a mobile robot being used in a warehouse continue scan the

environment surrounded it and saves that data for further processing like map building and path planning.

The process of collecting the information of environment for development of map and self-localize in measured

map is called Simultaneous Localization and Mapping or SLAM. The type of map varies with respect to the

environment. The environment would be indoor, outdoor. It could be under water, surface of water, floor of the

ground or aerial.

For environments with locally distinguishable features, landmark-based maps have been extensively used. If

we assume that the position of the robot is always known, it simply remains to maintain an estimate about the

positions of the individual landmarks over time [2].

A mobile robot scanning the envirnment and generate landmark based map

Mathematical Representation of SLAM

Let a mobile robot is roaming in an unknown environment. It starts from an unknown location𝒙𝟎. The uncertainty

in the motion making it more complicate to determine the pose of mobile robot. The robot senses the environment

with some induced noise. The process of developing the map of the environment and determining the poses is

called Simultaneous Localization and Mapping (SLAM).

At time t the location of the robot is 𝒙𝑡. The path of the robot can be expresses as

𝑿𝑻 = {𝒙𝟎 + 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 + ⋯ 𝒙𝑻} 1

T is terminal time and may be infinite. Relative information between two positions can be determined by

odometry. Let 𝒖𝑡 is the odometry caricaturists between time t-1 and t, so the motion of the robot can be express

as

𝑼𝑻 = {𝒖𝟎 + 𝒖𝟏 + 𝒖𝟐 + 𝒖𝟑 + ⋯ 𝒖𝑻} 2

63

If the true map of the environment is m, presenting the locations of landmarks, objects and surfaces. The robot

establishes the information between self-location and features in m. The sequence of measurements is

𝒁𝑻 = {𝒛𝟎 + 𝒛𝟏 + 𝒛𝟐 + 𝒛𝟑 + ⋯ 𝒛𝑻} 3

Now it is established that the recovering the model of m using measurement and sensor data is called SLAM.

The graphical model of the SLAM is presented in the below figure. In this figure, the measurement zt-1 is

measured by the information of motion ut-1 and location xt-1 and scanned information from m. The information xt-

1 is added to xt with new motion information and generates zt, and the process continues till xn

Graphical model of SLAM

Literary there are two major forms of SLAM. One is full SLAM and other is online SLAM.

First one is estimating the posterior over the entire path together

𝒑(𝑿𝑻, 𝒎|𝒁𝑻𝑼𝑻) 4

The second type seeks to recover the present location of robot.

𝒑(𝒙𝒕, 𝒎|𝒁𝒕𝑼𝒕) 5

The problem of SLAM categorizes along with several dimensions.

Kalman Filters base SLAM

Earliest and most influential algorithm of SLAM is Extended Kalman Filter EKF SLAM. It was introduced by

Randall Smith in 1987. A group of researchers in 1990 proposed an experimental setup using this algorithm.

They propose the use of a single state vector to estimate the locations of the robot and set of the features. A

covariance matrix represents the uncertainty, including the correlations. As the rover moves the state vector and

the covariance matrix are updated using the EKF. New states are added on the observation of new feature, so

size of system covariance matrix grows. A multivariate Gaussian represents the EKF algorithm [3].

𝒑(𝒙𝒕, 𝒎|𝒁𝒕𝑼𝒕) = 𝓝(𝝁𝒕, ∑𝒕) 6

The vector 𝝁𝒕 holds the best estimate of rover’s current location 𝒙𝒕 and feature’s location. ∑𝒕 Is the covariance

of the rover and its expected error in guess 𝝁𝒕.

64

The practical application of EKF SLAM is presented in the below figure. Robot starts to navigate from a point

that serves as an origin. As the rover moves, pose and uncertainty increases. The size of the ellipse presents this

increment in data. The rover also senses landmarks in its range and map them. The fixed measurement

uncertainty with the growing POS uncertainty is also added in estimated map.

The dotted line in figure represents the path of the robot. The shaded ellipse presents the estimated own position.

Small dots represent landmarks and their estimated location is white ellipse. In figure a, b and c uncertainty of

the robot position is increased. In figure d robot senses first land mark second time, so the uncertainty reduced

Online SLAM with EKF(a, b and c) uncertainty of the robot position is increased. (d) Robot senses first land

mark second time, so the uncertainty reduced.

The quadratic nature of the covariance matrix is a key concern of this algorithm. There are several extensions

have been proposed. They considered a special form of matrices for their algorithm and a compressed filter that

reduce the computation requirements. A researcher’s claim that Decoupled Stochastic Mapping (DSM) is an

efficient approach for large scale mapping and localization. They divided the environment or map with small

overlapped maps. It reduced the burden of computing.

Procedure:

Following is the KF based Matlab implementation of the SLAM.

65

clc;
clear;
close all;

% Basic EKF-SLAM implementation
true_val=[0 0 0;
 2 0 0;
 4 0 0;
 6 0 0;
 8 0 0;
 10 0 0];

odom=[0.02 -0.02 0;
 2.1 -0.12 -0.024;
 2.2 -0.14 -0.026;
 2.15 -0.11 -0.023;
 2.18 -0.13 -0.026;
 2.12 -0.11 -0.022]; % Odometric data (dx, dy, dtheta)

% range sensor data (range 1, bearing 1, range 2, bearing 2)
ranges=[13.42 0.463 13.42 -0.463;
 11.55 0.528 11.57 -0.526;
 9.98 0.643 9.99 -0.6334;
 8.46 0.779 8.45 -0.778;
 7.05 0.977 7.04 -0.978;
 6.33 1.251 6.41 -1.253]; %13.2;0.46;13.2;-0.46

sig_t1=0.2;sig_th1=6*pi/180;sig_fx=0.6;sig_fy=0.5; % variance for initialiasating P
sig_t=0.08;sig_th=5*pi/180; % variance for Q
sig_row=0.1;sig_alpha=2*pi/180; % variance for R
dx=0;dy=0;dth=0;
HA=0; HB=0; HC=0; HD=0; HE=0; HF=0;

X=[0;0;0;11.95;5.96;11.93;-5.96]; %initialising X
P=[(sig_t1)^2 0.1 0.1 0.1 0.1 0.1 0.1;
 0.1 (sig_t1)^2 0.1 0.1 0.1 0.1 0.1;
 0.1 0.1 (sig_th1)^2 0.1 0.1 0.1 0.1;
 0.1 0.1 0.1 (sig_fx)^2 0.1 0.1 0.1;
 0.1 0.1 0.1 0.1 (sig_fy)^2 0.1 0.1;
 0.1 0.1 0.1 0.1 0.1 (sig_fx)^2 0.1;
 0.1 0.1 0.1 0.1 0.1 0.1 (sig_fy)^2];

A=[1 0 -dy 0 0 0 0;
 0 1 dx 0 0 0 0;
 0 0 1 0 0 0 0;
 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0]; % initialising A

Q=[(sig_t)^2 0.001 0.001 0.001 0.001 0.001 0.001;
 0.001 (sig_t)^2 0.001 0.001 0.001 0.001 0.001;
 0.001 0.001 (sig_th)^2 0.001 0.001 0.001 0.001;

66

 0.001 0.001 0.001 0.001 0.001 0.001 0.001;
 0.001 0.001 0.001 0.001 0.001 0.001 0.001;
 0.001 0.001 0.001 0.001 0.001 0.001 0.001;
 0.001 0.001 0.001 0.001 0.001 0.001 0.001];

%initialising Q

R=[(sig_row)^2 0;
 0 (sig_alpha)^2]; %initialising R
I=eye(7,7);

odomtx=0;
odomty=0;
odomt=[odomtx odomty];
XT=[X(1) X(2)];
% Plot
figure(1);
plot(XT(:,1),XT(:,2),'r--o'); %KF pose
hold on;
grid on;
hold on;
plot(odomt(:,1),odomt(:,2),'b--o'); %odometry pose
hold on;
plot(true_val(1,1),true_val(1,2),'g--o'); %actual pose
hold on;
plot(X(4),X(5),'g*','MarkerSize',10);%actual feature1 plot
hold on;
plot(X(6),X(7),'g*','MarkerSize',10);%actual feature2 plot
hold on;

% KF SLAM loop
for i=1:size(odom,1)
 dx = odom(i,1);
 dy = odom(i,2);
 dth = odom(i,3);
 odomtx=odomtx+dx;
 odomty=odomty+dy;
 odomt=[odomt;[odomtx odomty]];

 % Prediction
 A(1,3) = -dy;
 A(2,3) = dx;

 XP = X + [dx;dy;dth;0;0;0;0];
 PP = A * P * A' + Q;

 % Correction
 range1=ranges(i,1);
 bearing1=ranges(i,2);
 range2=ranges(i,3);
 bearing2=ranges(i,4);

 for j=1:2

 if j==1
 fx=XP(4);

67

 fy=XP(5);
 zn=[range1;bearing1];
 else
 fx=XP(6);
 fy=XP(7);
 zn=[range2;bearing2];
 end

 dist=sqrt((XP(1)-fx)^2+(XP(2)-fy)^2);
 angp=atan2((fy-XP(2)),(fx-XP(1)))-XP(3);
 zp=[dist;angp];
 HA= (XP(1)-fx)/dist;
 HB= (XP(2)-fy)/dist;
 HD= (fy-XP(2))/dist^2;
 HE= (XP(1)-fx)/dist^2;

 if j==1
 H=[HA HB 0 -HA -HB 0 0;
 HD HE -1 -HD -HE 0 0];
 else
 H=[HA HB 0 0 0 -HA -HB;
 HD HE -1 0 0 -HD -HE];
 end

 y= zn - zp;
 s= H * PP * H' + R;
 k= PP * H' * inv(s);
 XP= XP + k *y;
 PP= (I - k * H) * PP;
 end

 X = XP;
 P = PP;

 XT=[XT;[X(1) X(2)]];
 % plots
 plot(XT(:,1),XT(:,2),'r--o'); %KF pose
 hold on;
 plot(odomt(:,1),odomt(:,2),'b--o'); %odometry pose
 hold on;
 plot(true_val(1:i,1),true_val(1:i,2),'g--o'); %true pose
 hold on;
 plot(X(4),X(5),'r*','MarkerSize',10); %KF feature 1 location
 hold on;
 plot(X(6),X(7),'r*','MarkerSize',10); %KF feature 2 location
 hold on;
end
asd=0;
% real scanner's plot
%
% lidar spec
% min_ang1=-2.35619449615;max_ang1 =2.35619449615;ang_step1 =0.00436332309619; % Hokuyo
%
% reading horizontal scan
% Scan = readtable('E:\lidar_short.xlsx','ReadVariableNames',1);%horizontal
% ranges = table2array(Scan(:,12:359));%12:1080
% ranges = table2array(Scan(:,12:1080));

68

% time = table2array(Scan(:,1));
% time= (time(:,1)- time(1,1))/1000000; %s1 timestamp
% s1_ranges = [time,ranges];
%

s1_cartcheck=scan_polar_to_cartesian_index(s1_ranges(1,2:end),min_ang1,ang_step1,1,1,1);
% figure(100);
% plot(s1_cartcheck(:,1),s1_cartcheck(:,2),'g.');
% hold on;
% grid on;
% hold on;
% %

Tasks:
1. Run the code once again by using following odometric values and provide your result in the workbook.

odom=[0.02 -0.02 0;
 1.9 -0 -0.024;
 2.1 -0.17 -0.026;
 2.3 -0.15 -0.023;
 2.25 -0.09 -0.026;
 2.12 -0.10 -0.022];

2. Run the code by making your new range values for given feature locations (13, 5 and 13,-5) and provide your

result in the workbook.

ranges=[];

69

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: ___EL-422 Robotics__________________________________

Laboratory Experiment No. __07_______ Date: ___________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of software

menu (syntax,

components, commands,

tools, layout etc.).

Can’t identify

software menus.

Rarely

identifies

software

menus.

Occasionally

identifies

software

menus.

Able to

identify

software

menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools, layout)

efficiently.

Can’t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands, tools,

layout)

Adherence to safety

procedures and handling

of equipment (computing

unit, peripheral devices,

and other equipment in

lab).

Doesn’t handle

equipment with

required care and

safety.

Rarely handles

equipment

with required

care and

safety.

Occasionally

handles

equipment

with required

care and

safety.

Often handles

equipment

with required

care and

safety.

Handles

equipment with

required care and

safety.

Ability to troubleshoot

software errors

(detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot

the errors

Occasionally

able to

troubleshoot

the errors

Often able to

troubleshoot

the errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to

perform the

analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

F /OBEM 01/05/00

70

Lab Experiment # 08

Objective:

Analyze the functioning of Robot Operating System (ROS)

Equipment:

Linux operated PCs having ROS installed

Theory:

Introduction to ROS

ROS is an open-source robot operating system, it is a set of software libraries and tools that help you build robot

applications that work across a wide variety of robotic platforms [4].

ROS Core Concept:

Main Features:

The Robot Operating System ROS is not an actual operating system, but a framework and set of tools that provide

functionality of an operating system on a heterogeneous computer cluster. Its usefulness is not limited to robots,

but the majority of tools provided are focused on working with peripheral hardware.

Installation and Running ROS

1. Make sure linux is running

2. Install ROS. Make sure the version you install is Kinetic, as that is the most recent LTS release.

http://wiki.ros.org/kinetic/Installation

71

$ source /opt/ros/kinetic/setup.bash

3. Set up the environment:

4. You will have to do this every time you start.

5. Create a catkin workspace. Catkin is a program like 'make' that is used by ROS.

6. ROS workspace is created to manage packages (software libraries) to execute required task.

7. Initially, the workspace will contain only the toplevel CMakeLists.txt

8. catkin_make command builds the workspace and all the packages within it

9. catkin_create_pkg creates a new package with the specified dependencies

10. For example, create a first_pkg package:

72

11. To compile the cpp file, need some C++ project editor like Eclipse, install it and press Ctrl-B

12. Source the workspace's setup.sh file after calling catkin_make:

13. To build the package in the terminal call catkin_make.

14. Can also add this line to .bashrc startup file

15. Now write command rosrun to execute your node:

16. Try launching: roslaunch is a tool for easily launching multiple ROS nodes as well as setting parameters

on the Parameter Server

17. It takes in one or more XML configuration files (with the .launch extension) that specify the parameters

to set and nodes to launch

18. If you use roslaunch, you do not have to run roscore manually.

19. Add move_turtle.launch to your package:

73

20. Run the launch file:

You should see the turtle in the simulator constantly moving forward until it bumps into the wall

Task:
1. Create and build your own ROS package and run the given example in it.

74

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: ___EL-422 Robotics__________________________________

Laboratory Experiment No. __08_______ Date: ___________________

Psychomotor Domain Assessment Rubric-Level P3

Skill Sets
Extent of Achievement

0 1 2 3 4

Equipment Identification

Sensory skill to identify

equipment and/or its
component for a lab work.

Not able to identify

the equipment.

-- -- -- Able to identify

equipment as well

as its components.

Equipment Use

Sensory skills to describe

the use of the equipment

for the lab work.

Never describes

the use of

equipment.

Rarely able to

describe the

use of

equipment.

Occasionally

describe the use of

equipment.

Often able to

describe the use of

equipment.

Frequently able to

describe the use of

equipment.

Procedural Skills Displays

skills to act upon sequence

of steps in lab work.

Not able to either

learn or perform

lab work

procedure.

Able to slightly

understand lab

work procedure

and perform lab

work.

Able to somewhat

understand lab work

procedure and

perform lab work.

Able to moderately

understand lab

work procedure

and perform lab

work.

Able to fully

understand lab

work procedure

and perform lab

work.

Response

Ability to imitate the lab
work on his/her own.

Not able to

imitate the lab

work.

Able to slightly

imitate the lab

work.

Able to somewhat

imitate the lab work.

Able to moderately

imitate the lab

work.

Able to fully

imitate the lab

work.

Observation’s Use

Displays skills to perform

related mathematical

calculations using the

observations from lab

work.

Not able to use lab

work observations

into mathematical

calculations.

Able to slightly

use lab work

observations into

mathematical

calculations.

Able to somewhat

use lab work

observations into

mathematical

calculations.

Able to moderately

use lab work

observations into

mathematical

calculations.

Able to fully use

lab work

observations into

mathematical

calculations.

Safety Adherence

Adherence to safety

procedures.

Doesn’t adhere to

safety procedures.

Slightly

adheres to

safety

procedures.

Somewhat adheres to

safety procedures.

Moderately adheres

to safety

procedures.

Fully adheres to

safety procedures.

Equipment Handling

Equipment care during the

use.

Doesn’t handle

equipment with

required care.

Rarely handles

equipment with

required care.

Occasionally

handles equipment

with required care.

Often handles

equipment with

required care.

Handles

equipment with

required care.

Group Work

Contributes in a group

based lab work.

Never

participates.

Rarely

participates.

Occasionally

participates and

contributes.

Often participates

and contributes.

Frequently

participates and

contributes.

 Weighted CLO (Psychomotor Score)

Remarks

Instructor’s Signature with Date:

F /OBEM 01/05/00

75

Lab Experiment # 09

Objective:

Imitate the urdf exemplary model for a 2 DOF industrial robot and to simulate in ROS

Equipment:

ubuntu and ROS operated PCs

Theory:

Understanding robot modeling using URDF:

We have to create a file and write the relationship between each link and joint in the robot and save the file with

the .urdf extension.

The following tags are the commonly used URDF tags to compose a URDF robot model:

link: The link tag represents a single link of a robot. Using this tag, we can model a robot link and its properties.

The modeling includes size, shape, color, and can even import a 3D mesh to represent the robot link. We can

also provide dynamic properties of the link such as inertial matrix and collision properties.

The syntax is as follows:

<link name="<name of the link>">

<inertial>...........</inertial>

 <visual></visual>

 <collision>..........</collision>

 </link>

The Visual section represents the real link of the robot, and the area surrounding the real link is the Collision

section.

joint: The joint tag represents a robot joint. The joint tag supports the different types of joints such as revolute,

continuous, prismatic, fixed, floating, and planar. The syntax is as follows:

 <joint name="<name of the joint>">

 <parent link="link1"/>

<child link="link2"/>

<calibration />

<dynamics damping/>

 <limit effort />

</joint>

A URDF joint is formed between two links; the first is called the Parent link and the second is the Child link.

The following is an illustration of a joint and its link:

76

robot: This tag encapsulates the entire robot model that can be represented using URDF. Inside the robot tag,

we can define the name of the robot, the links, and the joints of the robot.

The syntax is as follows:

<robot name="<name of the robot>"

<link> </link>

<link> </link>

 <joint> </joint>

 <joint></joint>

 </robot>

A robot model consists of connected links and joints. Here is a visualization of the robot model:

gazebo: This tag is used when we include the simulation parameters of the Gazebo simulator inside URDF. We

can use this tag to include gazebo plugins, gazebo material properties, and so on. The following shows an

example using gazebo tags:

 <gazebo reference="link_1">

<material>Gazebo/Black</material>

 </gazebo>

Creating the ROS package for the Robot description:

let's create a ROS package in the catkin workspace so that the robot model keeps using the following command:

$ catkin_create_pkg mastering_ros_robot_description_pkg roscpp tf geometry_msgs urdf rviz xacro

Before creating the urdf file for this robot, let's create three folders called urdf, meshes, and launch inside the

package folder. The urdf folder can be used to keep the urdf/xacro files that we are going to create. The meshes

folder keeps the meshes that we need to include in the urdf file and the launch folder keeps the ROS launch files.

Creating our first URDF model:

 After learning about URDF and its important tags, we can start some basic modeling using URDF. The first

robot mechanism that we are going to design is a pan and tilt mechanism as shown in the following figure.

There are three links and two joints in this mechanism. The base link is static, in which all other links are

mounted. The first joint can pan on its axis and the second link is mounted on the first link and it can tilt on its

77

axis. The two joints in this system are of a revolute type.

Procedure:

Let's see the URDF code of this mechanism. mastering_ros_robot_description_pkg/urdf and open pan_tilt.urdf.

The code indentation in URDF is not mandatory for URDF but it keeping indentation can improve code

readability:

<?xml version="1.0"?>

 <robot name="pan_tilt">

 <link name="base_link">

 <visual> <geometry>

<cylinder length="0.01" radius="0.2"/>

</geometry> <origin rpy="0 0 0" xyz="0 0 0"/>

 <material name="yellow">

 <color rgba="1 1 0 1"/>

 </material>

</visual>

 </link>

 <joint name="pan_joint" type="revolute">

 <parent link="base_link"/>

 <child link="pan_link"/>

<origin xyz="0 0 0.1"/>

<axis xyz="0 0 1" />

</joint>

 <link name="pan_link">

 <visual> <geometry>

 <cylinder length="0.4" radius="0.04"/>

 </geometry>

<origin rpy="0 0 0" xyz="0 0 0.09"/>

<material name="red">

 <color rgba="0 0 1 1"/>

</material>

 </visual>

 </link>

 <joint name="tilt_joint" type="revolute">

 <parent link="pan_link"/>

<child link="tilt_link"/>

 <origin xyz="0 0 0.2"/>

 <axis xyz="0 1 0" />

</joint>

78

 <link name="tilt_link">

<visual>

<geometry>

 <cylinder length="0.4" radius="0.04"/>

</geometry>

 <origin rpy="0 1.5 0" xyz="0 0 0"/>

<material name="green">

 <color rgba="1 0 0 1"/>

</material>

</visual>

 </link>

</robot>

Explaining the URDF file

When we check the code, we can add a <robot> tag at the top of the description:

<?xml version="1.0"?>

<robot name="pan_tilt">

The <robot> tag defines the name of the robot that we are going to create. Here, we named the robot pan_tilt.

If we check the sections after the <robot> tag definition, we can see link and joint definitions of the pan and tilt

mechanism:

 <link name="base_link">

 <visual>

 <geometry>

 <cylinder length="0.01" radius="0.2"/>

 </geometry>

 <origin rpy="0 0 0" xyz="0 0 0"/>

 <material name="yellow">

 <color rgba="1 1 0 1"/>

 </material>

 </visual>

 </link>

The preceding code snippet is the base_link definition of the pan and tilt mechanism. The <visual> tag can

describe the visual appearance of the link, which is shown on the robot simulation. We can define the link

geometry (cylinder, box, sphere, or mesh) and the material (color and texture) of the link using this tag:

 <joint name="pan_joint" type="revolute">

<parent link="base_link"/>

 <child link="pan_link"/>

 <origin xyz="0 0 0.1"/>

<axis xyz="0 0 1" />

</joint>

In the preceding code snippet, we define a joint with a unique name and its joint type. The joint type we used

here is revolute and the parent link and child link are base_link and the pan_link respectively. The joint origin is

also specified inside this tag.

Save the preceding URDF code as pan_tilt.urdf and check whether the urdf contains errors using the following

command:

$ check_urdf pan_tilt.urdf

79

The check_urdf command will parse urdf and show an error, if any. If everything is OK, it will show an output

as follows:

robot name is: pan_tilt

---------- Successfully Parsed XML --------------

root Link: base_link has 1 child(ren)

child(1): pan_link

child(1): tilt_link

If we want to view the structure of the robot links and joints graphically, we can use a command tool called

urdf_to_graphiz:

$ urdf_to_graphiz pan_tilt.urdf

This command will generate two files: pan_tilt.gv and pan_tilt.pdf. We can view the structure of this robot using

following command:

$ evince pan_tilt.pdf

We will get the following output:

Visualizing the robot 3D model in RViz

After designing URDF, we can view it on RViz. We can create a view_demo.launch launch file and put the

following code into the launch folder, code/mastering_ros_robot_description_pkg/launch for the same code:

<launch>

<arg name="model" />

 <param name="robot_description" textfile="$(find mastering_ros_robot_description_pkg)/urdf/pan_tilt.urdf"

/>

 <param name="use_gui" value="true"/>

 <node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" /> <node

name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher" />

<node name="rviz" pkg="rviz" type="rviz" args="-d $(find mastering_ ros_robot_description_pkg)/urdf.rviz"

required="true" />

</launch>

We can launch the model using the following command:

$ roslaunch mastering_ros_robot_description_pkg view_demo.launch

 If everything works fine, we will get a pan and tilt mechanism in RViz

80

Interacting with pan and tilt joints

We can see an extra GUI came along with RViz, which contains sliders to control pan joints and tilt joints. This

GUI is called the Joint State Publisher node from the joint_state_publisher package:

 <node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />

We can include this node in the launch file using this statement. The limits of pan and tilt should be mentioned

inside the joint tag:

 <joint name="pan_joint" type="revolute">

<parent link="base_link"/>

<child link="pan_link"/>

<origin xyz="0 0 0.1"/>

<axis xyz="0 0 1" />

 <limit effort="300" velocity="0.1" lower="-3.14" upper="3.14"/>

<dynamics damping="50" friction="1"/>

 </joint>

The <limit effort="300" velocity="0.1" lower="-3.14" upper="3.14"/> defines the limits of effort, velocity, and

angle limits. The effort is the maximum force supported by this joint, lower and upper indicate the lower and

upper limit of the joint in the radian for the revolute type joint, and meters for prismatic joints. The velocity is

the maximum joint velocity.

The preceding screenshot shows the GUI of Joint State Publisher with sliders and current joint values shown in

the box.

Adding physical and collision properties to a URDF model:

Before simulating a robot in a robot simulator, such as Gazebo, V-REP, and so on, we need to define the robot

link's physical properties such as geometry, color, mass, and inertia, and the collision properties of the link.

We will only get good simulation results if we define all these properties inside the robot model. URDF provides

tags to include all these parameters and code snippets of base_link contained in theses properties as given here:

<link>

 <collision>

81

<geometry>

 <cylinder length="0.03" radius="0.2"/>

 </geometry>

<origin rpy="0 0 0" xyz="0 0 0"/>

</collision>

 <inertial>

<mass value="1"/>

 <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"/>

 </inertial>

</link>

Here, we define the collision geometry as cylinder and the mass as 1 Kg, and we also set the inertial matrix of

the link. The collision and inertia parameters are required in each link; otherwise, Gazebo will not load the robot

model properly.

Tasks:
1. Add another joint in the given example and simulate in Gazebo

2. Prepare a 7 DOF arm using XACRO file and simulate in Gazebo

82

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: ___EL-422 Robotics__________________________________

Laboratory Experiment No. __09_______ Date: ___________________

Psychomotor Domain Assessment Rubric-Level P3

Skill Sets
Extent of Achievement

0 1 2 3 4

Equipment Identification

Sensory skill to identify

equipment and/or its
component for a lab work.

Not able to identify

the equipment.

-- -- -- Able to identify

equipment as well

as its components.

Equipment Use

Sensory skills to describe

the use of the equipment

for the lab work.

Never describes

the use of

equipment.

Rarely able to

describe the

use of

equipment.

Occasionally

describe the use of

equipment.

Often able to

describe the use of

equipment.

Frequently able to

describe the use of

equipment.

Procedural Skills Displays

skills to act upon sequence

of steps in lab work.

Not able to either

learn or perform

lab work

procedure.

Able to slightly

understand lab

work procedure

and perform lab

work.

Able to somewhat

understand lab work

procedure and

perform lab work.

Able to moderately

understand lab

work procedure

and perform lab

work.

Able to fully

understand lab

work procedure

and perform lab

work.

Response

Ability to imitate the lab
work on his/her own.

Not able to

imitate the lab

work.

Able to slightly

imitate the lab

work.

Able to somewhat

imitate the lab work.

Able to moderately

imitate the lab

work.

Able to fully

imitate the lab

work.

Observation’s Use

Displays skills to perform

related mathematical

calculations using the

observations from lab

work.

Not able to use lab

work observations

into mathematical

calculations.

Able to slightly

use lab work

observations into

mathematical

calculations.

Able to somewhat

use lab work

observations into

mathematical

calculations.

Able to moderately

use lab work

observations into

mathematical

calculations.

Able to fully use

lab work

observations into

mathematical

calculations.

Safety Adherence

Adherence to safety

procedures.

Doesn’t adhere to

safety procedures.

Slightly

adheres to

safety

procedures.

Somewhat adheres to

safety procedures.

Moderately adheres

to safety

procedures.

Fully adheres to

safety procedures.

Equipment Handling

Equipment care during the

use.

Doesn’t handle

equipment with

required care.

Rarely handles

equipment with

required care.

Occasionally

handles equipment

with required care.

Often handles

equipment with

required care.

Handles

equipment with

required care.

Group Work

Contributes in a group

based lab work.

Never

participates.

Rarely

participates.

Occasionally

participates and

contributes.

Often participates

and contributes.

Frequently

participates and

contributes.

 Weighted CLO (Psychomotor Score)

Remarks

Instructor’s Signature with Date:

F /OBEM 01/05/00

83

Lab Experiment # 10

Objective:

Imitate the urdf model for a differential drive moving robot and to simulate in ROS

Equipment:

PCs having ubuntu and ROS

Theory:

Differential Robot

Differential drive robot is the most common type of moving robot. A differential drive system works by

controlling the velocities of main two co-axial wheels to reach to the desired navigation goal.

To mechanically design and simulate the robot, a Universal Robot Description Format (URDF) needs to generate

in URDF folder as per standard ROS procedure. URDF supports XML and XACRO (XML macro) languages.

Xacro code is easier to implement, maintain and has better readability. So, lets create a new robot description

file in urdf folder by right clicking the mouse and opening gedit toolbox. The path of the file is: urdf/kbot.xacro.

Building ROS Differential Robot:

1. This example has taken from free ebook of Kiranpalla. There are multiple examples available as mentioned in

previous lecture. So just follow them to learn how to make ROS differential rover.

2. Creating differential robot package in catkin_ws:

 a. $ cd ~/catkin_ws/src

b. $ catkin_create_pkg kbot_description std_msgs rospy roscpp tf geometry_msgs urdf rviz xacro actionlib

actionlib_msgs

c. $ cd ..

 d. $ catkin_make

Placement of Package File:

1. Create manually (using right hand mouse button) or using following command, some folders required to place

your package files orderly.

$ cd ~/catkin_ws/src/kbot_description/src

$ mkdir launch urdf rviz world meshes

2. Each created folder has specific purpose:

launch: it will hold launch file (just like exe file) of your package.

urdf: It will hold your robot description file.

rviz: it will hold visualization file for your robot in rviz tool.

world: It will hold environment file where your robot will work.

There are many other folders which we can create when needed such as meshes, config etc. when you will need

specific files for them

Now your package folder as highlighted below will appear like this:

84

Universal Robot Description Format (URDF):

To mechanically design and simulate the robot, a Universal Robot Description Format (URDF) needs to generate

in URDF folder as per standard ROS procedure.

URDF supports XML and XACRO (XML macro) languages. Xacro code is easier to implement, maintain and

has better readability.

So, let’s create a new robot description file in urdf folder by right clicking the mouse and opening gedit toolbox.

The path of the file is: urdf/kbot.xacro.

Procedure:

Format of XACRO File:

Writing following lines in kbot.xacro file:

 <?xml version="1.0"?>

• <robot>

• <xmlns:xacro="http://www.ros.org/wiki/xacro" name="kbot">

•

• <xacro:property name="base_width" value="0.16"/>

• <xacro:property name="base_len" value="0.16"/>

• <xacro:property name="wheel_radius" value="0.035"/>

• <xacro:property name="base_wheel_gap" value="0.007"/>

• <xacro:property name="wheel_separation" value="0.15"/>

• <xacro:property name="wheel_joint_offset" value="0.02"/>

 • </robot>

In previous file, before </robot> writing following lines:

Box Inertia:

Box inertia is a macro that defines inertia for any box-shaped link. Inertia formulae (ixx, iyy, izz so on) change

with the shape of the object and can be obtained by Googling

• <xacro:macro name="box_inertia" params="m w h d">

• <inertial>

• <mass value="${m}"/>

• <inertia ixx="${m / 12.0 * (d*d + h*h)}" ixy="0.0" ixz="0.0" iyy="${m / 12.0 * (w*w +

85

h*h)}" iyz="0.0" izz="${m / 12.0 * (w*w + d*d)}"/>

• </inertial>

• </xacro:macro>

Base footprint:

Base footprint is modelled as a tiny box with heavy mass. This represents the center of the robot.

• <link name="base_footprint">

• <xacro:box_inertia m="20" w="0.001" h="0.001" d="0.001"/>

• <visual>

• <origin xyz="0 0 0" rpy="0 0 0" />

• <geometry>

• <box size="0.001 0.001 0.001" />

• </geometry>

• </visual>

• </link>

Base link

Whereas base link is modelled as a sheet (a box with negligible height) to which rest of the KBot components

are going to be attached

Adding following lines:

• <link name="base_link">

• <xacro:box_inertia m="10" w="${base_len}" h="${base_width}" d="0.01"/>

• <visual>

• <geometry>

• <box size="${base_len} ${base_width} 0.01"/>

• </geometry>

• <material name="black">

• <color rgba="0 0 0 1"/>

• </material>

• </visual>

• <collision>

• <geometry>

• <box size="${base_len} ${base_width} 0.01"/>

• </geometry>

• </collision>

• </link>

Base link joint:

This is for connecting base link to base footprint.

<joint name="base_link_joint" type="fixed">

• <origin xyz="0 0 ${wheel_radius + 0.005}" rpy="0 0 0" />

• <parent link="base_footprint"/>

• <child link="base_link" />

86

• </joint>

Wheel link and a joint:

Adding wheels in following lines:

• <xacro:macro name="cylinder_inertia" params="m r h">

• <inertial>

• <mass value="${m}"/>

• <inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0" iyy="${m*(3*r*r+h*h)/12}" iyz = "0"

izz="${m*r*r/2}"/>

• </inertial>

• </xacro:macro>

•

• <xacro:macro name="wheel" params="prefix reflect">

• <link name="${prefix}_wheel">

• <visual>

• <origin xyz="0 0 0" rpy="${pi/2} 0 0"/>

• <geometry>

• <cylinder radius="${wheel_radius}" length="0.005"/>

• </geometry>

• </visual>

• <collision>

• <origin xyz="0 0 0" rpy="${pi/2} 0 0"/>

• <geometry>

• <cylinder radius="${wheel_radius}" length="0.005"/>

• </geometry>

• </collision>

• <xacro:cylinder_inertia m="10" r="${wheel_radius}" h="0.005"/>

• </link>

Adding wheel’s joints in following lines:

• <joint name="${prefix}_wheel_joint" type="continuous">

• <axis xyz="0 1 0" rpy="0 0 0" />

• <parent link="base_link"/>

• <child link="${prefix}_wheel"/>

• <origin xyz="${wheel_joint_offset} ${((base_width/2)+base_w

heel_gap)*reflect} -0.005" rpy="0 0 0"/>

• </joint>

• </xacro:macro>

•

• <xacro:wheel prefix="left" reflect="1"/>

• <xacro:wheel prefix="right" reflect="-1"/>

The previous code creates a wheel link and a joint to connect it the base link.

Then, using this macro to create a link and a joint for each wheel left_wheel, left_wheel_joint, right_wheel &

right_wheel_joint.

87

Note that a parameter reflect is used to place wheels on either side of base link.

Also, the property wheel_joint_offset determines how far from base plate the wheels are (horizontal offset).

Adding a caster wheel

Adding a caster wheel in following lines:

• <xacro:macro name="sphere_inertia" params="m r">

• <inertial>

• <mass value="${m}"/>

• <inertia ixx="${2.0*m*(r*r)/5.0}" ixy="0.0" ixz="0.0" iyy="${2.0*m*(r*r)/5.0}" iyz="0.0"

izz="${2.0*m*(r*r)/5.0}"/>

• </inertial>

• </xacro:macro>

•

• <link name="caster_wheel">

• <visual>

• <origin xyz="0 0 0" rpy="0 0 0"/>

• <geometry>

• <sphere radius="${caster_wheel_radius}"/>

• </geometry>

• </visual>

• <collision>

• <origin xyz="0 0 0" rpy="0 0 0"/>

• <geometry>

• <sphere radius="${caster_wheel_radius}"/>

• </geometry>

• </collision>

• <xacro:sphere_inertia m="5" r="${caster_wheel_radius}"/>

• </link>

Adding a caster wheel joint in following lines:

• <joint name="caster_wheel_joint" type="continuous">

• <axis xyz="0 1 0" rpy="0 0 0" />

• <parent link="base_link"/>

• <child link="caster_wheel"/>

• <origin xyz="${caster_wheel_joint_offset} 0 -${caster_wheel_radius+0

.005}" rpy="0 0 0"/>

• </joint>

Now the basic differential robot is ready. Now some steps are required to visualize and to navigate it in ROS

environment.

Creating a launch file:

First, creating a launch file “kbot_base_rviz.launch” in the folder “launch” to read the URDF (xacro) file just

created in the URDF folder and to launch rviz (a visualization tool).

88

The launch file uses xacro utility to paste the URDF and capture it in a parameter robot_description of the

parameter server.

Three nodes will be launched: robot_state_publisher, joint_state_publisher ensure that proper transformations

between various links (link frames) are published while rviz node initiates rviz visualization tool

Writing the launch file:

• <launch>

• <param name="robot_description" command="$(find xacro)/xacro --inorder

$(find kbot_description)/urdf/kbot.xacro"/>

•

• <node name="robot_state_publisher" pkg="robot_state_publisher" type="s

tate_publisher"/>

•

• <node name="joint_state_publisher" pkg="joint_state_publisher" type="join

t_state_publisher"/>

•

• <node name="rviz" pkg="rviz" type="rviz" required="true"/>

• </launch>

Generating a rviz GUI:

The last node opens rviz GUI.

Some settings need to do first in GUI, change value of Global Options -> Fixed Frame from map to base_link.

Click on Add in Displays panel and add a Robot Model

Rviz tool provides visualization and navigational help, however it is not a simulator where you can virtually run

and observe behavior of robot.

The rviz GUI settings can be seen as follows:

89

The robot now can be seen in rviz as shown below:

Gazebo simulator

Gazebo is a physics-based real-world robotics simulator. It is the de-facto simulator for most ROS robots.

Gazebo allows robotic engineers to rapidly test their design and algorithms. Gazebo has several pre-built models

required to build most kinds of robots and environments (worlds).

Every ROS distribution has some version of Gazebo, however if it is not visible in your ROS then it can be

installable using gazebo_ros packages on your host system.

Gazebo supports visualization of URDF-based robot models. Let’s run Gazebo and visualize KBot in the

simulator (as well as in rviz).

Creating another launch file in the folder “kbot_description/launch” and named it

“kbot_base_rviz_gazebo.launch”. Copy and paste text of earlier launch file and add

following text in it.

• <include file="$(find gazebo_ros)/launch/empty_world.launch">

• <arg name="debug" value="false" />

90

• <arg name="gui" value="true" />

• <arg name="paused" value="false"/>

• <arg name="use_sim_time" value="false"/>

• <arg name="headless" value="false"/>

• <arg name="verbose" value="true"/>

• </include>

•

• <!--Launch Gazebo Simulator-->

• <node name="spawn_model" pkg="gazebo_ros" type="spawn_model" args="-urdf -param

robot_description -model kbot -verbose" output="screen"/>

Gazebo requires to load a world file along with a robot model. Currently in this example, an empty world robot

environment model is included with some Gazebo parameters.

The KBot model is loaded in Gazebo using spawn_model node as shown in previous slide.

Now running the launch file in another terminal as shown by following command:

$ roslaunch kbot_description kbot_base_rviz_gazebo.launch

The robot model will be appeared like this:

Interfacing Gazebo with URDF:

To navigate the robot, lets add some Gazebo’s differential drive plugin in your robot URDF.

It will be able to receive manual steering commands for the robot to run its wheels.

Then a teleop ROS node will be used to send velocity commands to the robot model.

Adding following lines in URDF/XACRO model before the label </robot>:

• <gazebo>

• <plugin name="differential_drive_controller" filename="libgazebo_ros_diff_drive.so">

• <alwaysOn>false</alwaysOn>

• <legacyMode>false</legacyMode>

• <updateRate>20</updateRate>

• <leftJoint>left_wheel_joint</leftJoint>

91

• <rightJoint>right_wheel_joint</rightJoint>

• <wheelSeparation>${wheel_separation}</wheelSeparation>

• <wheelDiameter>${wheel_radius * 2}</wheelDiameter>

• <torque>20</torque>

• <commandTopic>/kbot/base_controller/cmd_vel</commandTopic>

• <odometryTopic>/kbot/base_controller/odom</odometryTopic>

• <odometryFrame>odom</odometryFrame>

• <robotBaseFrame>base_footprint</robotBaseFrame>

• </plugin>

• </gazebo>

The newly added code appends a Differential Drive Gazebo plugin to the robot model. Any plugin within tag

must be included under tags.

A plugin may have its own parameters. Here left_wheel_joint and right_wheel_joint are the wheel joint names

already defined in kbot.xacro. Similarly, values for and come from the main xacro file.

This plugin subscribes to the topic /kbot/base_controller/cmd_vel and publishes topic

/kbot/base_controller/odom.

Now modifying the launch file to call tele-op node.

Adding following lines in launch file before </launch> tag:

• <node name="teleop" pkg="teleop_twist_keyboard" type="teleop_twist_keyboar

d.py" output="screen">

• <remap from="/cmd_vel" to="/kbot/base_controller/cmd_vel"/>

• </node>

ROS provides this package to steer a robot base using the keyboard.

A node of package teleop_twist_keyboard publishes a topic called cmd_vel that represents velocity commands

for the robot.

Now compiling the complete project (package):

$ cd ~/catkin_ws

$ catkin_make

$ source devel/setup.sh

launch rviz and Gazebo using below command in a terminal.

$ roslaunch kbot_description kbot_base_rviz_gazebo.launch

In another terminal launch teleop_twist_keyboard node.

$roslaunch kbot_simple_control kbot_control_teleop.launch

Some configuration parameters in rviz must be tweaked to run the package correctly.

92

First, set Displays -> Global Options -> Fixed Frame to odom frame instead of map.

Next, add RobotModel visualization to Displays by clicking ‘add’ and selecting it. Your robot model should be

now visible in the map area.

In a similar way, add TF visualization to see co-ordinate frames.

Also, change Current View -> Target Frame to odom. This ensure that odom frame at the initial position of the

robot, while base_footprint and robot model navigate the world.

Go to the terminal where teleop_keyboard_twist was launched. Press key ‘i’ and see the robot move forward.

Please a relevant key to stop it. Go back to rviz and Gazebo to review the current position of the robot.

Tasks:

1. Add a box on the top surface of dimension 10x10x10 cubic centimeter and again simulate the differential

rover

2. Prepare your own differential robot with different dimensions and simulate on Gazebo

93

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: ___EL-422 Robotics__________________________________

Laboratory Experiment No. __10_______ Date: ___________________

 Psychomotor Domain Assessment Rubric-Level P3

Skill Sets
Extent of Achievement

0 1 2 3 4

Equipment Identification

Sensory skill to identify

equipment and/or its
component for a lab work.

Not able to identify

the equipment.

-- -- -- Able to identify

equipment as well

as its components.

Equipment Use

Sensory skills to describe

the use of the equipment

for the lab work.

Never describes

the use of

equipment.

Rarely able to

describe the

use of

equipment.

Occasionally

describe the use of

equipment.

Often able to

describe the use of

equipment.

Frequently able to

describe the use of

equipment.

Procedural Skills Displays

skills to act upon sequence

of steps in lab work.

Not able to either

learn or perform

lab work

procedure.

Able to slightly

understand lab

work procedure

and perform lab

work.

Able to somewhat

understand lab work

procedure and

perform lab work.

Able to moderately

understand lab

work procedure

and perform lab

work.

Able to fully

understand lab

work procedure

and perform lab

work.

Response

Ability to imitate the lab
work on his/her own.

Not able to

imitate the lab

work.

Able to slightly

imitate the lab

work.

Able to somewhat

imitate the lab work.

Able to moderately

imitate the lab

work.

Able to fully

imitate the lab

work.

Observation’s Use

Displays skills to perform

related mathematical

calculations using the

observations from lab

work.

Not able to use lab

work observations

into mathematical

calculations.

Able to slightly

use lab work

observations into

mathematical

calculations.

Able to somewhat

use lab work

observations into

mathematical

calculations.

Able to moderately

use lab work

observations into

mathematical

calculations.

Able to fully use

lab work

observations into

mathematical

calculations.

Safety Adherence

Adherence to safety

procedures.

Doesn’t adhere to

safety procedures.

Slightly

adheres to

safety

procedures.

Somewhat adheres to

safety procedures.

Moderately adheres

to safety

procedures.

Fully adheres to

safety procedures.

Equipment Handling

Equipment care during the

use.

Doesn’t handle

equipment with

required care.

Rarely handles

equipment with

required care.

Occasionally

handles equipment

with required care.

Often handles

equipment with

required care.

Handles

equipment with

required care.

Group Work

Contributes in a group

based lab work.

Never

participates.

Rarely

participates.

Occasionally

participates and

contributes.

Often participates

and contributes.

Frequently

participates and

contributes.

 Weighted CLO (Psychomotor Score)

Remarks

Instructor’s Signature with Date:

F /OBEM 01/05/00

94

Lab Experiment # 11

Objective:

Operate under supervision the working of a 4 DOF industrial robot and to interface it with ROS

Equipment:

PCs having ubuntu, ROS and 4 DOF industrial robotic unit

Theory:

4 DOF:

The 4DOF robotic arm has 4 joints to imitate a human upper arm namely joint 1,2,3 and 4 that rotate around x,y

and z axis respectively. The joint moves four arm links to get the required posture of the wrist that will be

assembled with the hand in future application.

Degrees of Freedom, in a mechanics context, are specific, define modes in which a mechanical device or system

can move. The number of degrees of freedom is equal to the total number of independent displacements or

aspects of motion. A machine may operate into 3 dimensions but have more than 3 degrees of freedom.

Consider a robotic arm built to work like a human arm. Shoulder motion can take place as pitch (up and down)

or yaw (left and right). Elbow motion can occur only as pitch. Wrist motion can occur as pitch or yaw. Rotation

(roll) may also be possible for wrist and shoulder.

95

Procedure:

96

Tasks:

1. Run the example code by changing joint angles to 45 degree.

2. Apply feedback signal using potentiometer and display on ROS terminal.

97

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: ___EL-422 Robotics__________________________________

Laboratory Experiment No. __11_______ Date: ___________________

Psychomotor Domain Assessment Rubric-Level P3

Skill Sets
Extent of Achievement

0 1 2 3 4

Equipment Identification

Sensory skill to identify

equipment and/or its
component for a lab work.

Not able to identify

the equipment.

-- -- -- Able to identify

equipment as well

as its components.

Equipment Use

Sensory skills to describe

the use of the equipment

for the lab work.

Never describes

the use of

equipment.

Rarely able to

describe the

use of

equipment.

Occasionally

describe the use of

equipment.

Often able to

describe the use of

equipment.

Frequently able to

describe the use of

equipment.

Procedural Skills Displays

skills to act upon sequence

of steps in lab work.

Not able to either

learn or perform

lab work

procedure.

Able to slightly

understand lab

work procedure

and perform lab

work.

Able to somewhat

understand lab work

procedure and

perform lab work.

Able to moderately

understand lab

work procedure

and perform lab

work.

Able to fully

understand lab

work procedure

and perform lab

work.

Response

Ability to imitate the lab
work on his/her own.

Not able to

imitate the lab

work.

Able to slightly

imitate the lab

work.

Able to somewhat

imitate the lab work.

Able to moderately

imitate the lab

work.

Able to fully

imitate the lab

work.

Observation’s Use

Displays skills to perform

related mathematical

calculations using the

observations from lab

work.

Not able to use lab

work observations

into mathematical

calculations.

Able to slightly

use lab work

observations into

mathematical

calculations.

Able to somewhat

use lab work

observations into

mathematical

calculations.

Able to moderately

use lab work

observations into

mathematical

calculations.

Able to fully use

lab work

observations into

mathematical

calculations.

Safety Adherence

Adherence to safety

procedures.

Doesn’t adhere to

safety procedures.

Slightly

adheres to

safety

procedures.

Somewhat adheres to

safety procedures.

Moderately adheres

to safety

procedures.

Fully adheres to

safety procedures.

Equipment Handling

Equipment care during the

use.

Doesn’t handle

equipment with

required care.

Rarely handles

equipment with

required care.

Occasionally

handles equipment

with required care.

Often handles

equipment with

required care.

Handles

equipment with

required care.

Group Work

Contributes in a group

based lab work.

Never

participates.

Rarely

participates.

Occasionally

participates and

contributes.

Often participates

and contributes.

Frequently

participates and

contributes.

 Weighted CLO (Psychomotor Score)

Remarks

Instructor’s Signature with Date:

F /OBEM 01/05/00

98

Lab Experiment # 12

Objective:

Manipulate with guidance the working and interfacing of a moving rover and to run the rover using ROS

Equipment:

PCs having ubuntu, ROS and a moving rover unit

Theory:

Small Rover Navigation:

The differential drive small rover is made in such a way that it can be navigated through keyboard using ROS

(Robot Operating System).

Following are the components that have been used in the small rover:

 Arduino Mega 2560

 Motor Driver (L298N)

 9V Battery

 DC motors

Four motors have been used, each side of the two motors are connected parallelly which is then been controlled

by the dual motor driver(L298N).

The PC is installed with ROS (Robot Operating System) which is connected to Arduino Mega which is then

connected to the Motor drivers to drive the motors. Laptop is the Master node whereas Arduino Is the slave node

which Is receiving instruction from laptop which in turn drive the motors. The above picture includes two motors

which represents four motors each is connected parallelly to the other.

Procedure:

Following where the command run on Linux terminal to run ROS.
1. Opening ROS environment by running the command roscore

99

2. After running the above command, rosrun rosserial_python serial_node.py /dev/ttyUSB0, so that the laptop starts

communicating with the Arduino board.

100

3. Afterwards, we read the current status of the rover movement through rostopic command i.e: rostopic echo

button_press and then in the new terminal teleop twist keyboard library has been called by the following command:

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

ARDUINO CODE:

#include <ros.h>

#include <std_msg/String.h>

#include <std_msgs/Ultn16.h>

#include <geometry_msg/Twist.h>

#define BUTTON 10

#define LED1 5

#define LED2 6

#define LED3 7

#define LED4 8

ros::NodeHandle nh;

geometry_msgs::Twist msg;

std_msgs::String button_msg;

std_msgs::UInt16 led_msg;

float move1;

float move2;

void subscriberCallback(const geometry_msgs::Twist& cmd_vel)

{

 move1 = cmd_vel.linear.x;

101

move2 = cmd_vel.angular.z;

if (move1>0 && move2 == 0)

{

Forward();

button_msg.data = "Forward";

}

else if (move1<0)

{

Reverse();

button_msg.data = "Reverse";

}

else if (move1 > 0 && move2 < 0)

{

Right();

button_msg.data = "Right";

}

else if (move1 > 0 && move2 > 0)

{

 Left();

button_msg.data = "Left";

}

else

{

die();

button_msg.data = "Stop";

}

}

ros::Publisher button_publisher("button_press", &button_msg);

ros::Subscriber led_subscriber("/cmd_vel", &subscriberCallback);

void setup()

{

// put your setup code here, to run once:

pinMode(LED1, OUTPUT);

pinMode(LED2, OUTPUT);

pinMode(LED3, OUTPUT);

pinMode(LED4, OUTPUT);

pinMode(BUTTON, INPUT);

nh.initNode();

nh.advertise(button_publisher);

nh.subscribe(led_subscriber);

}

void loop()

{

// put your main code here, to run repeatedly:

button_publisher.publish(&button_msg);

nh.spinOnce();

102

// Serial.println(led_msg.data);

delay(1);

}

//-----------------Functions-------------------//

void Forward()

{

digitalWrite(LED1, HIGH);

digitalWrite(LED2, LOW);

digitalWrite(LED3, HIGH);

digitalWrite(LED4, LOW);

delay(100);

die();

}

void Reverse()

{

digitalWrite(LED1, LOW);

digitalWrite(LED2, HIGH);

digitalWrite(LED3, LOW);

digitalWrite(LED4, HIGH);

delay(100); die();

}

void Right()

{

digitalWrite(LED1, HIGH);

digitalWrite(LED2, LOW);

digitalWrite(LED3, LOW);

digitalWrite(LED4, HIGH);

delay(100);

die();

}

void Left()

{

digitalWrite(LED1, LOW);

digitalWrite(LED2, HIGH);

digitalWrite(LED3, HIGH);

digitalWrite(LED4, LOW);

delay(100);

die();

}

void die()

{

digitalWrite(LED1, LOW);

digitalWrite(LED2, LOW);

digitalWrite(LED3, LOW);

digitalWrite(LED4, LOW);

}

103

Tasks:
1. Write a program to increase the speed of a rover twice as before.

2. Write a program to run a rover in a straight line by increase the speed twice.

3. Write a program to run the rover in a square shape path, it must return to the starting point

104

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: ___EL-422 Robotics__________________________________

Laboratory Experiment No. __12_______ Date: ___________________

 Psychomotor Domain Assessment Rubric-Level

P3

Skill Sets
Extent of Achievement

0 1 2 3 4

Equipment Identification

Sensory skill to identify

equipment and/or its
component for a lab work.

Not able to identify

the equipment.

-- -- -- Able to identify

equipment as well

as its components.

Equipment Use

Sensory skills to describe

the use of the equipment

for the lab work.

Never describes

the use of

equipment.

Rarely able to

describe the

use of

equipment.

Occasionally

describe the use of

equipment.

Often able to

describe the use of

equipment.

Frequently able to

describe the use of

equipment.

Procedural Skills Displays

skills to act upon sequence

of steps in lab work.

Not able to either

learn or perform

lab work

procedure.

Able to slightly

understand lab

work procedure

and perform lab

work.

Able to somewhat

understand lab work

procedure and

perform lab work.

Able to moderately

understand lab

work procedure

and perform lab

work.

Able to fully

understand lab

work procedure

and perform lab

work.

Response

Ability to imitate the lab
work on his/her own.

Not able to

imitate the lab

work.

Able to slightly

imitate the lab

work.

Able to somewhat

imitate the lab work.

Able to moderately

imitate the lab

work.

Able to fully

imitate the lab

work.

Observation’s Use

Displays skills to perform

related mathematical

calculations using the

observations from lab

work.

Not able to use lab

work observations

into mathematical

calculations.

Able to slightly

use lab work

observations into

mathematical

calculations.

Able to somewhat

use lab work

observations into

mathematical

calculations.

Able to moderately

use lab work

observations into

mathematical

calculations.

Able to fully use

lab work

observations into

mathematical

calculations.

Safety Adherence

Adherence to safety

procedures.

Doesn’t adhere to

safety procedures.

Slightly

adheres to

safety

procedures.

Somewhat adheres to

safety procedures.

Moderately adheres

to safety

procedures.

Fully adheres to

safety procedures.

Equipment Handling

Equipment care during the

use.

Doesn’t handle

equipment with

required care.

Rarely handles

equipment with

required care.

Occasionally

handles equipment

with required care.

Often handles

equipment with

required care.

Handles

equipment with

required care.

Group Work

Contributes in a group

based lab work.

Never

participates.

Rarely

participates.

Occasionally

participates and

contributes.

Often participates

and contributes.

Frequently

participates and

contributes.

 Weighted CLO (Psychomotor Score)

Remarks

Instructor’s Signature with Date:

F /OBEM 01/05/00

105

Open Ended Lab

Objective:

Development of student’s based small industrial/rover hardware, integration with required electronic

components and operation of the robot as per given commands executed using ROS. The complete step by step

solution needs to provide by students as instructed during the lab sessions.

106

REFERENCES

1. Saeed B. Niku, “Introduction to Robotics, Analysis, Control, Applications”, Third edition, Prentice Hall and John

Wiley and Sons, 2020.

2. R. Siegwart, I. Nourbakhsh and D. Scaramuzza, “Introduction to Autonomous Mobile Robots”, Second edition, The

MIT press, 2011.

3. Peter Corke,”Robotics, Vision and Control: Fundamental Algorithms in Matlab”, Second edition, Springer-Verlag,

2017.

4. M. Quigley, “Programming robots with ROS”, O’Rielly Media Inc., 2015.

