

Department of Electronic Engineering
N.E.D. University of Engineering & Technology

PRACTICAL WORK BOOK

For the course

EMBEDDED ELECTRONICS (EL-421)
For B.E (EL)

Instructors name:__________________________
Student Name: ____________________________
Roll No.:_______________Batch: ______ ______

Semester :____________ Year:__________ __
Department: ______________________________

2

LABORATORY WORK BOOK

FOR THE COURSE

EL-421 Embedded Electronics

Prepared by:

Ms. Hafsa Amanullah

Reviewed by:

Electronic Engineering Department

Approved by:

Board of Studies

Electronic Engineering Department

3

Contents

Lab No. Date CLO List of Experiments Page No. Remarks

1

3
To setup Raspberry Pi with Raspbian OS and to

introduce python programming.
4

2

3

To practice interfacing digital I/Os using

General Purpose Input / Output (GPIO) pins of

Raspberry Pi.
11

3 3
To build traffic light system with Finite State

Machine (FSM) using Raspberry Pi. 15

4

3
To establish SPI communication between

Raspberry Pi and Arduino.
19

5

3
To introduce Verilog HDL for digital design

and functional verification.
23

6

3

To implement RISC-V basic modules such as

Multiplexer, ALU, and Immediate data

generator.
38

7

3
To implement Register file for 32-bit RISC-V

processor.
42

8

3
To implement instruction and data memory

Verilog modules for 32-bit RISC-V processor. 45

9

3
To implement Verilog module for instruction

fetch data path.
49

10

3
To implement Verilog module for Control unit

of RISC-V processor.
52

11

3

To implement a single-cycle RISC processor by

integrating previously designed Verilog

modules.
55

12

3
To implement Verilog module for SPI

communication between FPGA and a

peripheral.
58

13

3

Open Ended Lab

To build a 5-stage RISC-V pipelined processor

capable of executing provided assembly

instructions.

62

4

Lab Experiment 01
Objective: To setup Raspberry Pi with Raspbian OS and to introduce python programming.

Introduction

Raspberry Pi is a credit card size single board computer or a programmable P C . It i s
deve lop ed i n U .K. by Raspb er r y P i Foundation in 2009. The concept was initiated by
Eben Upton who works at Broadcom. It is a very low cost board, and a great tool for learning
computer programming & concepts of Embedded Linux, etc. It supports all age groups. Supports
and runs free and open source Linux OS. It consumes less than 5W of power. Supports full
HD video output (1080p), multiple USB ports, etc.

i. Technical Specs:

Processer: Quad core 1.2GHz Broadcom BCM2837 SoC (System on Chip)

Memory (RAM): 1GB

On Board Storage: Micro SD port

I/O Lines: 40 Pin GPIO connector

Lab Equipment(s)

Raspberry Pi Board, Power Adapter, SD card, SD card reader, HDMI – VGA converter,

Monitor, Mouse, Keyboard

Procedure

i. Setting up the Raspberry Pi:

1. Plug in a monitor (via HDMI) and a keyboard and mouse (via USB)

2. Get an operating system. Raspberry Pi needs an operating system. The image file

of the operating system must be present in the micro SD card of Raspberry Pi.

Figure 1-Raspberry Pi 3

5

ii. Installing Operating System:

1. Use New-Out-Of-Box Software (NOOBS) [www.raspberrypi.org/downloads]
2. Format the micro SD card with FAT file system.
3. Extract the files from NOOBS and put it on micro SD card.
4. NOOBS will install an operating system on micro SD of Raspberry Pi.
5. From the window shown in the Figure 2, choose Raspbian (a Linux

Distribution), the default option.

iii. Configuration of Raspberry Pi (Raspi-Config):

Raspi-Config is a tool which lets you to setup various step/boot options for the Raspberry

Pi.

Python Programming language:

Python is a high-level language and it is very easy to use. It is slower as compared to C/C++
as this language is interpreted rather than compiled. There are two versions on this language
i.e.; Python 2 and Python 3. Both the versions are valid.

There are two possible environments of python programming:

 Integrated Development Environment (IDE) [default].

 Text editor and interpreter, separately.

Figure 2-Operating system selection

Figure 3

http://www.raspberrypi.org/downloads

6

There are two ways to execute the python code:

 Interactive: executes lines typed interactively in a Python console.

 Batch: execute an entire python program.

i. Python Expressions

Algebraic Expressions

Python shell can evaluate algebraic expressions (+, -, *, /). Many algebraic functions are
available like abs (), min (), max (). Some examples are:

>>> 2 + 2 >>> 2 * (3 + 2) >>> 8 – 5 >>> 7 / 2

>>> 4 >>> 10 >>> 3 >>> 3.5

Boolean Expressions

Evaluate to True or False. It involves comparison operators like <, >, ==, !=, <= and >=.
Some examples are:

>>> 2 < 4 >>> 2 != 3 >>> 1 >= 3 >>> 2 == 4

>>> True >>> True >>> False >>> False

Boolean Operators

It includes Boolean operators like and, or, not. It also evaluates to True or False.

>>> 4 == 5 and 3 < 4 >>> True and True >>> False or False

False True False

Variables Assignments

Variables types are not declared. Interpreter determines type by usage.

>>> x == 3

>>> x

>>> 4 * x >>> y = 4 * x

>>> y

3 12 12

ii. Strings

A sequence of characters enclosed in quotes “Hello, world”. It can be assigned to a variable.
It can also be manipulated using string operators and functions.

>>> ‘Hello world’ >>> s = ‘still’ >>> t = ‘life’

‘Hello world’

String operators

Operator Definition
x in s x is a substring of s
x notin s x is not a substring of s

7

s + t Concatenation of s and t
s * n, n* s Concatenation of n copies of s
s[i] Character at index i of s
len (s) (function) length of string

Indexing operators

Index of an item in a sequence is its position in the sequence. Indexing operator is [],
takes an index as argument. Indices start at 0. It can be used to identify characters in a string.

>>> s = ‘Apple’

>>> s[0] >>> s[1] >>> s[4]

‘A’ ‘p’ ‘e’

iii. Functions

A sequence of instructions associated with a function name is called function. Function

definition starts with def. followed by function name, open/close parenthesis and colon.

Function Definition Function Call
>>> def test():
 print (‘A test function’)

>>> test()
A test function

Function parameters/arguments:

A function can take arguments which are values bound to variables inside the function.
Arguments are listed between parentheses in the function call.

>>> def circle_area (rad):

print (3.14 * rad * rad)

>>> circle_area (2)

12.56

Function Return Values:

Function can return values with the return instruction. A function call is substituted for its
return value in an expression.

>>> def circle_area (rad):

return (3.14 * rad * rad)

>>> total = 3 + circle_area (2)

>>> print(total)

15.56

iv. Lists:

A comma-separated sequence of items enclosed in square brackets is called list. Items can
be numbers, strings, other lists, etc.

8

>>> pets = [‘ant’, ‘bat’, ‘cat’, ‘dog’]

>>> lst = [0, 1, ‘two’, [4, ‘five’]]

>>> nums = [0, 1, 2, 3, 4, 5, 6, 7, 8]

List operators and functions

Operator Definition
x in lst x is an item of list named lst
x notin lst x is not an item of list named lst
lst + lstB Concatenation of lst and lstB
lst * n, n* lst Concatenation of n copies of lst
lst [i] Item at index i of lst
len (lst) Number of items in lst
min (lst) Minimum item in lst
max (lst) Maximum item in lst
sum (lst) Sum of item in lst

List methods

Operator Definition
lst.append (item) Adds item to the end of lst
lst.count (item) Returns the number of times item occurs in lst
lst.index (item) Returns index of (first occurance of) item in lst
lst.pop () Removes and returns the last item in lst
lst.remove (item) Removes (the first occurrence of) item from lst
lst.reverse (item) Reverses the order of items in lst
lst.sort (item) Sorts the items of lst in increasing order

 append (), remove (), reverse () and sort () do not return values.

v. Control Flow

Control flow instructions are the statements that change the order in which lines of code are
executed.

If statement

Template Example
if <condition>:

<indented code block>
<non_indented statement>

if temp > 80:
print (‘It is hot!’)

print (‘Good Bye!’)

if-else statement:

Template Example
if <condition>:

<indented code 1>
else:

<indented code 2>
<non_indented statement>

if temp > 80:
print (‘It is hot!’)

 else:
 print (‘not hot!’)

print (‘Goodbye’)

9

For loop:

Executes a block of code for every element in a sequence. Variable is bound to a sequence
element on each pass.

>>> name = ‘Ali’

>>> for char in name:

print (char)

A

l

i

While loop:
Execute intended block of code while condition is True.

>>> i = 0

>>> while i < 3:

print (i)

i = i + 1

0

1

2

Task

1. Write a python code to print Fibonacci series up to 6 terms for even numbered roll no.

and 7 terms for odd numbered roll no.

2. Write a python code that takes string as input and displays the number of vowels present

in the string.

10

F/OBEM 01/05/00

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL - 421 Embedded Electronics

Laboratory Session No. _____________ Date: ______________________

Psychomotor Domain Assessment Rubric-Level P3

Skill Sets
Extent of Achievement

0 1 2 3 4

Equipment Identification

Sensory skill to identify

equipment and/or its

component for a lab work.

Not able to

identify the

equipment

- - - Able to identify

equipment as well

as its components

Equipment Use

Sensory skills to

demonstrate the use of the

equipment for the lab work.

 Doesn't

demonstrate the

use of equipment.

Slightly

demonstrates the

use of equipment.

Somewhat

demonstrates the

use of equipment.

Moderately demo

nstrates the use of

equipment.

 Fully

demonstrates the

use of equipment.

Procedural Skills

Displays skills to act upon

sequence of steps in lab

work.

Not able to either

learn or perform

lab work

procedure.

Able to slightly

understand lab

work procedure

and perform lab

work.

Able to somewhat

understand lab

work procedure

and perform lab

work.

Able to

moderately

understand lab

work procedure

and perform lab

work.

Able to fully

understand lab

work procedure

and perform lab

work.

Response

Ability to imitate the lab

work on his/her own.

Not able to

imitate the lab

work.

Able to slightly

imitate the lab

work.

Able to somewhat

imitate the lab

work.

Able to

moderately

imitate the lab

work.

Able to fully

imitate the lab

work.

Observation’s Use

Displays skills to use the

observations from lab work

for experimental

verifications and

illustrations.

Not able to use

the observations

from lab work for

experimental

verifications and

illustrations.

Slightly able to

use the

observations from

lab work for

experimental

verifications and

illustrations.

Somewhat able to

use the

observations from

lab work for

experimental

verifications and

illustrations.

Moderately able

to use the

observations from

lab work for

experimental

verifications and

illustrations.

Fully able to use

the observations

from lab work for

experimental

verifications and

illustrations.

Safety Adherence

Adherence to safety

procedures.

Doesn‟t adhere to

safety procedures.

Slightly adheres

to safety

procedures.

Somewhat

adheres to safety

procedures.

Moderately

adheres to safety

procedures.

Fully adheres to

safety procedures

Equipment Handling

Equipment care during the

use.

Doesn‟t handle

equipment with

required care.

Rarely handles

equipment with

required care.

Occasionally

handles

equipment with

required care.

Often handles

equipment with

required care.

Handles

equipment with

required care.

Group Work

Contributes in a group

based lab work.

Doesn't

participate and

contribute.

Slightly

participates and

contributes.

Somewhat

participates and

contributes.

Moderately

participates and

contributes.

Fully participates

and contributes.

Weighted CLO (Psychomotor

Score)

Remarks

Instructor‟s Signature with Date:

11

Lab Experiment 02
Objective: To practice interfacing digital I/Os using General Purpose Input / Output (GPIO)

pins of Raspberry Pi.

Introduction

Digital I/O

One powerful feature of the Raspberry Pi is the row of GPIO (general purpose input/output) pins
along the top edge of the board. These pins are a physical interface between the Pi and the outside
world. At the simplest level, you can think of them as switches that you can turn on or off (input)
or that the Pi can turn on or off (output). Of the 40 pins, 26 are GPIO pins and the others are
power or ground pins (plus two ID EEPROM pins which you should not play with unless you know
your stuff!)

General Purpose/Multi-Function:

 Yellow colored pins can be used a general purpose I/O.

 Some pins are multi-function.

UART Pins:

 Pins 8 and 10 can be used for UART (serial) communication

 Tx for transmission.

 Rx for reception.

I2C Pins:

 Pins 3 and 5 can be used for I2C Communication.

 SDA for data.

 SCL for clock.

SPI Communication:

 MOSI, MISO, SCLK.

 2 pins for chip enable, CE0 and CE1.

i. GPIO Access:

To access the GPIO pins, GPIO library is used.

import RPi.GPIO as GPIO

Pin Numbering Modes:

There are two ways to refer the GPIO pins:

Figure 4-GPIO layout

12

1. The number of the pins in their order on the board (referring to Figure 4, lower rail of pins
being odd numbered likewise upper rail being even numbered).

GPIO.setmode (GPIO.BOARD)

2. The Broadcom SoC (System on Chip) number.

GPIO.setmode (GPIO.BCM)

Pin Direction and Assignment:

GPIO.setup (13, GPIO.OUT) // Set the pin direction

GPIO.output (13, True) // Assign value to output pin

Reading Input:
GPIO.setup (13, GPIO.IN) // Set the pin direction to an input

value = GPIO.input(13) // Read value on input pin.

Analog output

Pulse Width Modulation (PWM) is the most common technique in digital systems to provide

analog signals. In digital systems, we cannot directly apply the analog signal. In this technique,

the width of the waveform is varied by changing the value of duration of the high signal.

In Raspberry Pi 3, pin 12 and 24 (board numbering) generates PWM signals.

PWM Initialization:
pwm_obj = GPIO.PWM (12, 50)
pwm_obj.start (100)

PWM Control:
pwm_obj.ChangeDutyCycle (50)

Lab Equipment(s)

Raspberry Pi Board, Power Adapter, SD card, SD card reader, HDMI – VGA converter,

Monitor, Mouse, Keyboard

Task(s)

1. Connect the circuit as shown in the schematic. Write the code given below using

Python IDLE 3, run the code and observe the output.

13

import RPi.GPIO as GPIO
import time

GPIO.setmode GPIO.BOARD)
GPIO.setup (13, GPIO.OUT)

While True:
GPIO.output (13, True)
time.sleep (1)

GPIO.output (13, False)

time.sleep (1)

2. Design a traffic signal by employing red, yellow, and green LEDs and turning them on

and off in the appropriate sequence.

3. Connect the LED to pin 12 of RPi (Board Numbering). Write the code with the help of
pseudo code given below to control the brightness of LED using PWM Function.

// import GPIO Library
// import time Library

// set the GPIO mode (board/BCM)
// set the pin mode as (input/output)

// Initialize the PWM
while True:

for i in range (100):

pwm.ChangeDutyCycle (i)

time.sleep (0.1)

for i in range (100, 0, -1):

pwm.ChangeDutyCycle (i)

time.sleep (0.1)

Figure 5-Raspberry Pi connections

14

F/OBEM 01/05/00

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL - 421 Embedded Electronics

Laboratory Session No. _____________ Date: ______________________

Psychomotor Domain Assessment Rubric-Level P3

Skill Sets
Extent of Achievement

0 1 2 3 4

Equipment Identification

Sensory skill to identify

equipment and/or its

component for a lab work.

Not able to

identify the

equipment

- - - Able to identify

equipment as well

as its components

Equipment Use

Sensory skills to

demonstrate the use of the

equipment for the lab work.

 Doesn't

demonstrate the

use of equipment.

Slightly

demonstrates the

use of equipment.

Somewhat

demonstrates the

use of equipment.

Moderately demo

nstrates the use of

equipment.

 Fully

demonstrates the

use of equipment.

Procedural Skills

Displays skills to act upon

sequence of steps in lab

work.

Not able to either

learn or perform

lab work

procedure.

Able to slightly

understand lab

work procedure

and perform lab

work.

Able to somewhat

understand lab

work procedure

and perform lab

work.

Able to

moderately

understand lab

work procedure

and perform lab

work.

Able to fully

understand lab

work procedure

and perform lab

work.

Response

Ability to imitate the lab

work on his/her own.

Not able to

imitate the lab

work.

Able to slightly

imitate the lab

work.

Able to somewhat

imitate the lab

work.

Able to

moderately

imitate the lab

work.

Able to fully

imitate the lab

work.

Observation’s Use

Displays skills to use the

observations from lab work

for experimental

verifications and

illustrations.

Not able to use

the observations

from lab work for

experimental

verifications and

illustrations.

Slightly able to

use the

observations from

lab work for

experimental

verifications and

illustrations.

Somewhat able to

use the

observations from

lab work for

experimental

verifications and

illustrations.

Moderately able

to use the

observations from

lab work for

experimental

verifications and

illustrations.

Fully able to use

the observations

from lab work for

experimental

verifications and

illustrations.

Safety Adherence

Adherence to safety

procedures.

Doesn‟t adhere to

safety procedures.

Slightly adheres

to safety

procedures.

Somewhat

adheres to safety

procedures.

Moderately

adheres to safety

procedures.

Fully adheres to

safety procedures

Equipment Handling

Equipment care during the

use.

Doesn‟t handle

equipment with

required care.

Rarely handles

equipment with

required care.

Occasionally

handles

equipment with

required care.

Often handles

equipment with

required care.

Handles

equipment with

required care.

Group Work

Contributes in a group

based lab work.

Doesn't

participate and

contribute.

Slightly

participates and

contributes.

Somewhat

participates and

contributes.

Moderately

participates and

contributes.

Fully participates

and contributes.

Weighted CLO (Psychomotor

Score)

Remarks

Instructor‟s Signature with Date:

15

Lab Experiment 03
Objective: To build traffic light system with Finite State Machine (FSM) using Raspberry Pi.

Introduction

An FSM could take one of forms illustrated in Figure 6. An FSM could have multiple inputs,

multiple outputs, and state represented by multiple bits, (k bits in diagram). It also receives a

clock signal and a possible reset signal. There are two blocks of combinational logic: one that

determines next state, based on current state and inputs; and another that determines the output.

Every FSM also has a memory element that stores the state. On each clock edge, the FSM

transitions from current state to next state. In a Moore machine, the output is a function of state

only. In a Mealy machine, output is a function of state and inputs.

Figure 6-(a) Moore Machine (b) Mealy Machine

Steps to design FSM

1. Identify the inputs and outputs.

2. Sketch a state transition diagram.

3. For a Moore Machine:

a. Write a state transition table.

b. Write an output table.

For a Mealy Machine:

a. Write a combined state transition and output table

4. Select state encoding and convert the above tables to truth tables.

5. Write Boolean equations for next state and output logic based on truth tables.

6. Draw schematic outlining connections between gates based on Boolean equations.

These schematics are next state logic and output logic blocks in Figure 6(a).

7. For implementation, we need memory devices that store current state till the next clock

edge. This is the middle block, accepting CLK signal, in Figure 6(a).

16

Lab Equipment(s)

Raspberry Pi Board, Power Adapter, SD card, SD card reader, HDMI – VGA converter,

Monitor, Mouse, Keyboard

Task

Design a traffic light system for the intersection shown in Figure 7. Specifications for the design

are that traffic should flow either on Academic Ave. or Bravado Blvd. at a time, i.e. when LA is

green then LB should be red and vice versa. A green light first turns yellow for 5 seconds before

it turns red. A red light directly switches to green. Additionally, there are two traffic sensors, TA

and TB, on each of the roads respectively. The sensors TA and TB are HIGH if there is traffic on

corresponding road, and LOW if it‟s empty. If a light is green it should remain in that state till all

the traffic passes. The system should also provide a reset setting by which system is put in a

known state, specifically green on Academic; red on Bravado.

Figure 7-Intersection scenario of traffic light

Reference:

Harris, D., & Harris, S. (2010). Digital design and computer architecture. Morgan Kaufmann.

17

F/OBEM 01/05/00

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL - 421 Embedded Electronics

Laboratory Session No. _____________ Date: ______________________

Psychomotor Domain Assessment Rubric-Level P3

Skill Sets
Extent of Achievement

0 1 2 3 4

Equipment Identification

Sensory skill to identify

equipment and/or its

component for a lab work.

Not able to

identify the

equipment

- - - Able to identify

equipment as well

as its components

Equipment Use

Sensory skills to

demonstrate the use of the

equipment for the lab work.

 Doesn't

demonstrate the

use of equipment.

Slightly

demonstrates the

use of equipment.

Somewhat

demonstrates the

use of equipment.

Moderately demo

nstrates the use of

equipment.

 Fully

demonstrates the

use of equipment.

Procedural Skills

Displays skills to act upon

sequence of steps in lab

work.

Not able to either

learn or perform

lab work

procedure.

Able to slightly

understand lab

work procedure

and perform lab

work.

Able to somewhat

understand lab

work procedure

and perform lab

work.

Able to

moderately

understand lab

work procedure

and perform lab

work.

Able to fully

understand lab

work procedure

and perform lab

work.

Response

Ability to imitate the lab

work on his/her own.

Not able to

imitate the lab

work.

Able to slightly

imitate the lab

work.

Able to somewhat

imitate the lab

work.

Able to

moderately

imitate the lab

work.

Able to fully

imitate the lab

work.

Observation’s Use

Displays skills to use the

observations from lab work

for experimental

verifications and

illustrations.

Not able to use

the observations

from lab work for

experimental

verifications and

illustrations.

Slightly able to

use the

observations from

lab work for

experimental

verifications and

illustrations.

Somewhat able to

use the

observations from

lab work for

experimental

verifications and

illustrations.

Moderately able

to use the

observations from

lab work for

experimental

verifications and

illustrations.

Fully able to use

the observations

from lab work for

experimental

verifications and

illustrations.

Safety Adherence

Adherence to safety

procedures.

Doesn‟t adhere to

safety procedures.

Slightly adheres

to safety

procedures.

Somewhat

adheres to safety

procedures.

Moderately

adheres to safety

procedures.

Fully adheres to

safety procedures

Equipment Handling

Equipment care during the

use.

Doesn‟t handle

equipment with

required care.

Rarely handles

equipment with

required care.

Occasionally

handles

equipment with

required care.

Often handles

equipment with

required care.

Handles

equipment with

required care.

Group Work

Contributes in a group

based lab work.

Doesn't

participate and

contribute.

Slightly

participates and

contributes.

Somewhat

participates and

contributes.

Moderately

participates and

contributes.

Fully participates

and contributes.

Weighted CLO (Psychomotor

Score)

Remarks

Instructor‟s Signature with Date:

18

19

Lab Experiment 04
Objective: To establish SPI communication between Raspberry Pi and Arduino.

Introduction

SPI is a common communication protocol used by many different devices. For example, SD card

modules, RFID card reader modules, and 2.4 GHz wireless transmitter/receivers all use SPI to

communicate with microcontrollers.

One unique benefit of SPI is the fact that data can be transferred without interruption. Any

number of bits can be sent or received in a continuous stream. With I2C and UART, data is sent

in packets, limited to a specific number of bits. Start and stop conditions define the beginning

and end of each packet, so the data is interrupted during transmission.

Devices communicating via SPI are in a master-slave relationship. The master is the controlling

device (usually a microcontroller), while the slave (usually a sensor, display, or memory chip)

takes instruction from the master.

The simplest configuration of SPI is a single master, single slave system, but one master can

control more than one slave (more on this below).

MOSI (Master Output/Slave Input) – Line for the master to send data to the slave.

MISO (Master Input/Slave Output) – Line for the slave to send data to the master.

SCLK (Clock) – Line for the clock signal.

SS/CS (Slave Select/Chip Select) – Line for the master to select which slave to send data to.

Lab Equipment(s)

Raspberry Pi Board, Power Adapter, SD card, SD card reader, HDMI – VGA converter,

Monitor, Mouse, Keyboard, Arduino Uno, Desktop PC with Arduino IDE.

Hardware setup for SPI Communication

Make following connections:

 GND (first)
 MISO (master) to MISO (slave)
 MOSI (master) to MOSI (slave)
 SCLK (master) to SCLK (slave)

Make sure to connect MISO to MISO and MOSI to

MOSI, not MISO to MOSI. The software side will

handle that depending on which device is set as a

slave or master.

Note that for SPI, you normally have another wire connected to CS (Chip Select), or SS (Slave

Select). This is useful to choose which slave you are talking to. Here, as we have only one Arduino

slave, no need for this wire, the communication will still work.

http://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-SPI-Master-and-Slave.png

20

Software setup for SPI Communication

If you haven‟t used SPI on your Raspberry Pi yet, it probably means that the SPI communication

is not activated. To activate it, search for the /boot/config.txt file.

Open this file (with sudo), find the line #dtparam=spi=on, and remove the leading „#‟ to

uncomment it.

After that, reboot your Pi, and SPI will be activated as long as you don‟t comment the SPI line

again in the config file.

Task(s): SPI Communication using Arduino (as slave) and Raspberry Pi (as master).

Raspberry Pi SPI master Program Basic Arduino SPI slave program

1. #include <iostream>

2. #include <wiringPiSPI.h>
3.
4. #define SPI_CHANNEL 0
5. #define SPI_CLOCK_SPEED 1000000
6.
7. int main(int argc, char **argv)
8. {
9. int fd =

wiringPiSPISetupMode(SPI_CHANNEL
, SPI_CLOCK_SPEED, 0);

10. if (fd == -1) {
11. std::cout << "Failed to init

SPI communication.\n";
12. return -1;
13. }
14. std::cout << "SPI

communication successfully
setup.\n";

1. #include <SPI.h>

2.
3. void setup() {
4. // have to send on

master in, *slave out*
5. pinMode(MISO, OUTPUT);
6.
7. // turn on SPI in slave

mode
8. SPCR |= _BV(SPE);
9.
10. // turn on

interrupts
11. SPI.attachInterrupt(

);
12. }
13.
14. // SPI interrupt

routine

Figure 8-SPI Connections

21

15.
16. unsigned char buf[2] = { 23,

0 };
17. wiringPiSPIDataRW(SPI_CHANNE

L, buf, 2);
18.
19. std::cout << "Data returned:

" << +buf[1] << "\n";
20. return 0;

21. }

15. ISR (SPI_STC_vect)
16. {
17. byte c = SPDR;
18.
19. SPDR = c+10;
20. } // end of

interrupt service
routine (ISR) for SPI

21.
22. void loop() { }

 First the Raspberry Pi sends the value 23 to the Arduino, and receives a byte. No need to

really care about this received byte here.

 Upon reception of the first byte, the Arduino will trigger the SPI interrupt, add 10, and set

the new value, 33, to the SPI shift register, so it‟s ready for the next transfer.

 Then, the Raspberry Pi sends the second value from the buffer, and receives the value 33.

The received value will be printed which is the second byte of the buffer.

22

F/OBEM 01/05/00

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL - 421 Embedded Electronics

Laboratory Session No. _____________ Date: ______________________

Psychomotor Domain Assessment Rubric-Level P3

Skill Sets
Extent of Achievement

0 1 2 3 4

Equipment Identification

Sensory skill to identify

equipment and/or its

component for a lab work.

Not able to

identify the

equipment

- - - Able to identify

equipment as well

as its components

Equipment Use

Sensory skills to

demonstrate the use of the

equipment for the lab work.

 Doesn't

demonstrate the

use of equipment.

Slightly

demonstrates the

use of equipment.

Somewhat

demonstrates the

use of equipment.

Moderately demo

nstrates the use of

equipment.

 Fully

demonstrates the

use of equipment.

Procedural Skills

Displays skills to act upon

sequence of steps in lab

work.

Not able to either

learn or perform

lab work

procedure.

Able to slightly

understand lab

work procedure

and perform lab

work.

Able to somewhat

understand lab

work procedure

and perform lab

work.

Able to

moderately

understand lab

work procedure

and perform lab

work.

Able to fully

understand lab

work procedure

and perform lab

work.

Response

Ability to imitate the lab

work on his/her own.

Not able to

imitate the lab

work.

Able to slightly

imitate the lab

work.

Able to somewhat

imitate the lab

work.

Able to

moderately

imitate the lab

work.

Able to fully

imitate the lab

work.

Observation’s Use

Displays skills to use the

observations from lab work

for experimental

verifications and

illustrations.

Not able to use

the observations

from lab work for

experimental

verifications and

illustrations.

Slightly able to

use the

observations from

lab work for

experimental

verifications and

illustrations.

Somewhat able to

use the

observations from

lab work for

experimental

verifications and

illustrations.

Moderately able

to use the

observations from

lab work for

experimental

verifications and

illustrations.

Fully able to use

the observations

from lab work for

experimental

verifications and

illustrations.

Safety Adherence

Adherence to safety

procedures.

Doesn‟t adhere to

safety procedures.

Slightly adheres

to safety

procedures.

Somewhat

adheres to safety

procedures.

Moderately

adheres to safety

procedures.

Fully adheres to

safety procedures

Equipment Handling

Equipment care during the

use.

Doesn‟t handle

equipment with

required care.

Rarely handles

equipment with

required care.

Occasionally

handles

equipment with

required care.

Often handles

equipment with

required care.

Handles

equipment with

required care.

Group Work

Contributes in a group

based lab work.

Doesn't

participate and

contribute.

Slightly

participates and

contributes.

Somewhat

participates and

contributes.

Moderately

participates and

contributes.

Fully participates

and contributes.

Weighted CLO (Psychomotor

Score)

Remarks

Instructor‟s Signature with Date:

23

Lab Experiment 05
Objective: To introduce Verilog HDL for digital design and functional verification.

Introduction

 Three basic kinds of devices available in today‟s digital era are:

1. Memory devices – store random information as the contents of a spreadsheet or

database.

2. Microprocessors – execute various software instructions to perform a wide variety of

tasks.

3. Logic devices – provide specific functions, including device-to-device interfacing, data

communication, signal processing, data display, timing and controlling operations, and

almost every other function a system must perform.

i. Categories of Logic Devices

Logic devices can be classified into two broad categories – fixed and programmable. The

circuits in fixed logic devices are permanent and can‟t be reprogrammed once after

manufacturing, e.g. Application Specific ICs (ASICs). With fixed logic devices, the time

required to go from design, to prototypes, to a final manufacturing run can take from several

months to more than a year, depending on the complexity of the device. If the device does

not work properly, or if the requirements change, a new design must be developed.

Figure 9-Categories of logic devices

Whereas, programmable logic devices offer customers a wide range of logic capacity and

functionality that can be reconfigured whenever required. For PLDs, designers use

inexpensive software tools to quickly develop, simulate, and test their designs. Then, a

design can be quickly programmed into a device, and immediately tested in a live circuit.

The PLD that is used for this prototyping is the exact same PLD that will be used in the chip

for the final product such as iphones, USB flash drives etc. Major advantage of using PLDs is

C o m p l e x - P r o g r a m m a b l e

F i e l d - P r o g r a m m a b l e

L o g i c D e v i c e s

F i x e d
(e . g . A S I C)

P r o g r a m m a b l e
(e . g . P L D s)

24

that designer can change the circuitry, during the design phase, as often as it requires until

meets the required functionality.

The two major types of programmable logic devices are field programmable gate arrays

(FPGAs) and complex programmable logic devices (CPLDs). FPGAs are fine-grained

devices and offer the highest amount of logic density (up to 100,000s of logic blocks). They

are RAM based and needs to be configured at each power-up. FPGAs also have special

routing resources to implement arithmetic functions efficiently. CPLDs, on the other hand,

are coarse-grained devices and offer much smaller amounts of logic - up to about 10,000

gates. They are EEPROM based and are active at power-up. Like FPGAs, CPLDs do not

have such special routing resources. In these labs, we will be using an FPGA device to create

our own processor.

ii. Evolution of Digital Designing using HDLs

For a long time, programming languages such as FORTRAN, Pascal, and C were being used

to describe computer programs that were sequential in nature. Similarly, in the digital design

field, designers felt the need for a standard language to describe digital circuits. Thus,

Hardware Description Languages (HDLs) came into existence. HDLs allow the designers to

model the concurrency of processes found in hardware elements. Hardware description

languages such as Verilog HDL and VHDL (Very High Speed Integrated Circuit (VHSIC)

HDL) became popular. Verilog HDL originated in 1983 at Gateway Design Automation.

Later, VHDL was developed under contract from Defense Advanced Research Project

Agency (DARPA). Both Verilog and VHDL simulators to simulate large digital circuits

quickly gained acceptance from designers.

Even though HDLs were popular for logic verification, designers had to manually translate

the HDL-based design into a schematic circuit with interconnections between gates. The

advent of logic synthesis in the late 1980s changed the design methodology radically. Digital

circuits could be described at a Register Transfer Level (RTL) by use of an HDL. Thus, the

designer had to specify how the data flows between registers and how the design processes

the data. The details of gates and the interconnections to implement the circuit were

automatically extracted by logic synthesis tools from the RTL description.

Thus, logic synthesis pushed the HDLs into the forefront of digital design. Designers no

longer had to manually place gates to build digital circuits. They could describe circuits at an

abstract level in terms of functionality and dataflow by designing those circuits in HDLs.

Logic synthesis tools would implement the specified functionality in terms of gates and gate

interconnections.

HDLs also began to be used for system-level design. HDLs were used for simulation of

system boards, interconnect buses, FPGAs (Field Programmable Gate Arrays), and PALs

(Programmable Array Logic). A common approach is to design each IC chip, using an HDL,

and then verify system functionality via simulation.

25

iii. Selection of HDL

There are two major HDLs – Verilog and VHDL. One should consider the following points

while choosing HDL.

• “Ease of Learning” which relates to how easy it is to learn the language without prior

experience with HDLs.

• “Ease of Use” means once the first-time user has learned the language, how easy will it

be to use the language for their specific design requirements.

• “Adaptability” is another important factor i.e., how the HDL can integrate into the

current design environment and the existing design philosophy.

Introduction to Verilog HDL

This section briefly describes the syntax of Verilog HDL and covers some basic lexical elements

to write a Verilog HDL code.

i. Lexical Elements

The basic lexical conventions used by Verilog HDL are similar to those in the C programming

language. Verilog HDL is a case-sensitive language. All keywords are in lowercase.

Here we will only discuss some of the lexical conventions that are new to Verilog. For a detailed

reference, Verilog Language Reference manual or any other reference on Verilog may be

consulted.

Identifier – An identifier gives a unique name to an object, such as counter,

seven_segment, el2, etc. It is composed of letters, digits, the underscore character (_),

and the dollar sign ($). $ is usually used with a system task or function.

 The first character of an identifier must be a letter or underscore.

 Verilog is a case-sensitive language. Thus, data-bus, Data-bus, and

DATA_BUS refer to three different objects. To avoid confusion, we should

refrain from using the case to create different identifiers.

Keywords – Keywords are predefined identifiers that are used to describe language constructs.

For example, module, wire, not, etc.

White space – White space, which includes the space, tab, and newline characters, is used to

separate identifiers and can be used freely in the Verilog code. We can use proper white

spaces to format the code and make it more readable.

Comments – A comment is just for documentation purposes and will be ignored by a

compiler. Verilog has two forms of comments. A one-line comment starts with //, as:

26

// This is a comment

A multiple-line comment is encapsulated between /* and */, as shown below:

/* This is comment line 1.
 This is comment line 2.
 This is comment line 3.

*/

ii. Number representation

There are two types of number specification in Verilog: sized and unsized.

Sized numbers

Sized numbers are represented as

[sign][size] ‘[base format] [number]

[sign] is written in the case of signed numbers. [size] is written only in decimal and specifies

the number of bits in the number. Legal base formats are decimal („d or „D), hexadecimal („h

or „H), binary („b or „B) and octal („o or „O). The number is specified as consecutive digits

from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Only a subset of these digits is legal for a

particular base. Uppercase letters are legal for number specification.

4’b1111 // This is a 4-bit binary number
12’habc // This is a 12-bit hexadecimal number
16’d255 // This is a 16-bit decimal number

Unsized numbers

Numbers that are specified without a [base format] specification are decimal numbers by

default. Numbers that are written without a <size> specification have a default number of bits

that is simulator- and machine specific (must be at least 32).

 23456 // This is a 32-bit decimal number by default
 ‘hc3 // This is a 32-bit hexadecimal number
 ‘o21 // This is a 32-bit octal number

X or Z values

Verilog has two symbols for unknown and high impedance values. These values are very

important for modeling real circuits. An unknown value is denoted by x. A high impedance

value is denoted by z.

12’h13x // This is a 12-bit hex number; 4 least significant

// bits unknown
6’hx // This is a 6-bit hex number
32’bz // This is a 32-bit high impedance number

27

An x or a z sets four bits for a number in the hexadecimal base, three bits for a number in the

octal base, and one bit for a number in the binary base. If the most significant bit of a number

is 0, x, or z, the number is automatically extended to fill the most significant bits,

respectively, with 0, x, or z. This makes it easy to assign x or z to whole vector. If the most

significant digit is 1, then it is also zero extended.

Negative numbers

Putting a minus sign before the size for a constant number can specify negative numbers. Size

constants are always positive. It is illegal to have a minus sign between <base format> and

<number>.

 -6’d3 //8-bit negative number stored as 2’s complement of 3
 4’d-2 // illegal specification

iii. Data Types

Four basic values are used in most data types:

0: for "logic 0, or a false condition

1: for "logic 1", or a true condition

z: High impedence, floating state

x: for an unknown value

The z value corresponds to the output of a tri-state buffer. The x value is usually used in

modeling and simulation, representing a value that is not 0, I, or z, such as an uninitialized input

or output conflict.

Verilog has two main groups of data types: net and register

Nets

Nets represent connections between hardware elements. Just as in real circuits, nets have

values continuously driven onto them by the outputs of devices that they are connected to.

Nets are declared primarily with the keyword wire. Nets are one-bit values by default unless

they are declared explicitly as vectors.

wire pO, pl; // two 1-bit signals
wire [7:0] datal, data2; // 8-bit data
wire [31:0] addr; // 32- bit address
wire [0:7] revers-data; //ascending index should be avoided

While the index range can be either descending (as in [7:0]) or ascending (as in

[0:7]), the former is preferred since the leftmost position (i.e., 7) corresponds to the

MSB of a binary number.

28

It is possible to address bits or parts of a vector. For example, datal[3] refers to

the bit 3 of a wire data1 declared above. addr[2:0] three least significant bits

of a vector addr

The term wire and net are often used interchangeably. The default value of a net is z. Nets get

the output value of their drivers. If a net has no driver, it gets the value z.

Registers

Registers represent storage data elements. Registers retain value until another value is placed

onto them. Do not confuse the term registers in Verilog with hardware registers built from

edge triggered flip-flops in real circuits. In Verilog, the term register merely means a variable

that can hold a value. Unlike a net, a register does not need a driver. Verilog registers do not

need a clock as hardware registers do. Values of registers can be changed anytime in a

simulation by assigning a new value to the register.

Register data types are commonly declared by the key word reg. The default value for a reg

data type is x. An example of how registers are declared and used is shown below:

reg reset; // declare a variable that can hold its value

iv. Modules

Verilog provides the concept of a module. A module is the basic building block in Verilog. A

module can be an element or a collection of lower-level design blocks. A module provides the

necessary functionality to the higher-level blocks through its port interface (inputs and outputs)

but hides the internal implementation. This allows the designer to modify module internals

without affecting the rest of the design.

In Verilog, a module is declared by the keyword module. A corresponding keyword

endmodule must appear at the end of the module definition. Each module must have a

module_name, which is the identifier for the module, and a module_terminal_list, which

describes the input and output terminals of the module.

module <module_name> (<module_terminal_list>);

. . .
<module internals>
. . .

endmodule

v. Ports

Ports provide the interface by which modules can communicate with its environment. For

example, the input/output pins of an IC chip are its ports. The environment can interact with the

module only through its ports. The internals of the module are not visible to the environment.

This provides a very powerful flexibility to the designer. The internals of the module can be

changed without affecting the environment as long as the interface is not modified. Ports are also

referred to as terminals.

29

A module definition contains as optional list of ports. If the module does not

exchange any signals with the environment, there are no ports in the list.

Port Declaration

All ports in the list of ports must be declared in the module. Ports can be declared as follows

Verilog Keyword Type of Port

input Input port

output Output port

Inout Bi-directional port

Each port in the port list is defined as input, output, or inout, based on the direction of the port

signal. Thus, for the example of the fulladd4, the port declarations will be as shown

below:

module fulladd4 (sum, c_out, a, b, c_in);

// Begin port declarations section

output [3:0] sum; output c_out;

input [3:0] a, b;

input c_in;
// End port declarations section
…
<module internals>
…

endmodule

Note that all port declarations are implicitly declared as wire in Verilog. Thus, if port is

intended to be a wire, it is sufficient to declare it as output, input, or inout. Input or

inout ports as normally declared as wire. However, if output ports hold their value, they

must be declared as reg. For example, consider a module for a D-type flip-flop:

module DFF (q, d, clk, reset);
output reg q; // Output port q holds value; therefore it

// is declared as reg
input d, clk, resetl
…
…

endmodule

30

Ports of the type input cannot be declared as reg, because reg variables store

values and input ports should not store values but simply reflect the changes in

the external signals they are connected to.

vi. Instances

A module provides a template from which you can create actual objects. When a module is

invoked, Verilog creates a unique object from the template. Each object has its own name,

variables, parameters and I/O interfaces. The process of creating objects from a module template

is called instantiation, and the objects are called instances. In the example below, which shows

the module for a 4- bit ripple carry counter, four instances from the T-flipflop template are

created. The internals of the T_FF module are not shown.

// Define the top-level module called ripple carry counter. //

It instantiates 4 T-flipflops.

module ripple_carry_counter (q, clk, reset);

output [3:0] q;

input clk, reset;

// Four instances of the module T_FF are created. Each has a //

unique name. Each instance is passed a set of signals.
// Notice that each instance is a copy of the module T_FF

T_FF tff0 (.q(q[0]), .c(clk), .reset(reset));
T_FF tff1 (.q(q[1]), .c(q[0]), .reset(reset));
T_FF tff2 (.q(q[2]), .c(q[1]), .reset(reset));
T_FF tff3 (.q(q[3]), .c(q[2]), .reset(reset));

endmodule

The port name of a calling module (the module being instantiated) comes

first. In above example, the port c of a T_FF tff0 module is connected

to the port clk of a ripple_carry_counter.

Hands-on Verilog HDL

In this section, we will develop an example hardware of a 4-bit ripple carry counter using the

concepts learnt in previous section. The top-level diagram of a 4-bit ripple carry counter is

shown in the Figure 10. It is designed with four negative edge-triggered T-flip flops.

31

Figure 10-Top-level diagram of a ripple carry counter

Each of these above T-flipflops can be made from a negative edge-triggered D-flipflop and an

inverter (assuming that a q‟ output is not available). The implementation of T_FF using D_FF

and an inverter is shown in Figure 11.

Figure 11-Implementation of a T_FF using D_FF and inverter

i. Ripple Carry Counter

Using the top-down design approach, we will first write the Verilog description of a top-level

module, which is a 4-bit ripple carry counter. The Verilog code of ripple carry counter is shown

in Figure 12.

32

Figure 12-Verilog description of a top-level module named ripple_carry_counter

The module name should match the file name as shown in the figure above

In ripple_carry_counter module, shown above, four instances of the module T_FF

(tff0 to tff3) are used. Since the port name of a module being instantiated comes first,

therefore it is clear from the above instantiation that the T_FF module has three port names c,

r, and q.

The syntax of a not gate in verilog is: not <instance_name> (output, input) since

there could be multiple not gates in the same module, therefore it is mandatory to

define the different instance name for each instantiation.

ii. T-flipflop

We now have to define the internals of the module T_FF. The Verilog description of a T_FF

module is shown in Figure 13. This module contains an instance of a D_FF module, having four

ports. The T_FF module also contains a NOT gate which connects the output of a D_FF i.e. q,

with its input i.e. d. This implementation is already shown in Figure 11.

33

Figure 13-Verilog description of T_FF module

iii. D-flipflop

We are now left with designing the leaf module which is D-flipflop. The Verilog description of

a D_FF module is shown in Figure 14. This module contains an always block which is activated

either at the posedge (positive edge) of r (reset signal) or at the negedge (negative edge) of

c (clock signal). When a reset signal is triggered, the output of D_FF resets to 0. When reset is

disserted, the output q retains the value of input d on each negative edge of a clock signal.

Figure 14-Verilog implementation of D_FF

34

Note that the data type of the output port q is defined as reg only in D_FF

module and not in any other top-level modules. It is because the D_FF is the

main source of generating the output q, therefore it should be defined as reg.

The generated output signal q then simply propagates to the top-level modules,

therefore the data type of the output ports of these modules are simply net.

The design of 4-bit ripple carry counter module is complete.

Functional Verification

Once a design block is completed, it must be tested. The functionality of a design block can be

tested by applying stimulus and checking results. We call such a block the stimulus block. It is

good practice to keep the stimulus and design block separate. The stimulus block can be written

in Verilog. A separate language is not required to describe stimulus. The stimulus block is also

commonly called a test bench. Different test benches can be used to thoroughly test the design

block.

i. Creating Testbench/Stimulus

The stimulus block instantiates the design block and directly drives the signals in the design

block. In Figure 15, the stimulus block becomes the top-level block. It manipulates the signals

clk and reset, and checks and displays output signal q.

Figure 15-Stimulus block instantiates design block

In stimulus block approach (Figure 15), stimulus block acts like an

environment to provide inputs to the design block and observe its outputs.

Therefore, the stimulus block do not require any I/O ports interface.

We must now write the description of a stimulus block to check if the design module

ripple_carry_counter is functioning correctly. In this case, we must control the signals

clk and reset so that the regular function of the ripple carry counter and the reset mechanism

are both tested.

35

The Verilog module of the testbench for testing ripple_carry_counter design is shown in

Figure 16. It is clearly shown that the module tb in Figure 16 doesn‟t have any I/O ports. We only

have internal connections declared as a wire/reg. Now the Design Under Verification (DUV) is

instantiated and its ports are connected with the stimulus signals which, in our case, are clk,

reset and q. Then the clock signal (clk) is initialized and generated with a time period of 10

units i.e. it toggles between 1 and 0 after each 5 units, so the time period is 10 units. The

initial block (line 16) is used to assign the values at the beginning of simulation. This block

is not synthesizable, and therefore only used for simulation purpose. The always block (line

19) enforce the clock signal to toggle continuously each after 5 time units.

Figure 16-Stimulus/testbench for testing ripple_carry_counter module.

Similarly, the reset signal is defined to be high initially; deasserted after 15 time units, and

then asserted again after the total of 195 time units.

$monitor block is used to print the results on the transcript window of Modelsim®.

Once the testbench/stimulus is generated, we are now ready to perform simulation in

Modelsim®. Lab instructor will demonstrate about Quartus and Modelsim environment.

36

Task

1. Launch Quartus Prime Lite on your desktop PC. Create New Project and test the 4-bit ripple

carry counter. Attach printout of output waveform.

Reference

Pong P. Chu Xilinx Spartan 3 Version. FPGA Prototyping with Verilog examples, Wiley

37

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL - 421 Embedded Electronics

Laboratory Session No. _____________ Date: ______________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of

software menu

(syntax, components,

commands, tools,

layout etc.).

Can‟t identify

software menus.

Rarely identifies

software menus.

Occasionally

identifies

software menus.

Able to identify

software menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools,

layout) efficiently.

Can‟t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands,

tools, layout)

Adherence to safety

procedures and

handling of equipment

(computing unit,

peripheral devices,

and other equipment

in lab).

Doesn‟t handle

equipment with

required care and

safety.

Rarely handles

equipment with

required care and

safety.

Occasionally

handles

equipment with

required care and

safety.

Often handles

equipment with

required care

and safety.

Handles

equipment with

required care and

safety.

Ability to

troubleshoot software

errors (detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot the

errors

Occasionally

able to

troubleshoot the

errors

Often able to

troubleshoot the

errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to perform

the analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)
Remarks

Instructor‟s Signature with

Date:

38

Lab Experiment 06
Objective: To implement RISC-V basic modules such as Multiplexer, ALU, and Immediate data

generator.

Introduction

From now on, you will mostly be developing modules and simulating the results at your own. In

this lab you are required to develop a multiplexer, an ALU, and an immediate data extractor.

To complete this lab, you may need to use if/else structure, case structure,

concatenation operator or assignment operator in Verilog.

i. Case Structure

We already have seen the syntax and usage of if-else structure in Lab01 (D_FF implementation).

The if-else structure can also be nested similar to traditional programming languages. However,

the nested if-else-if can become unwieldy if there are too many alternatives. A shortcut to

achieve the same result is to use the case statement.

The syntax of Case conditional structure, in Verilog, is shown below. The keywords case,

endcase, and default are used in the case statement.

case (expression)

alternative1: statement1;

alternative2: statement2;

alternative3: statement3; ...

 default: default_statement;

 endcase

Each of statement1, statement2, default_statement can be a single statement or a block of

multiple statements. A block of multiple statements must be grouped by keywords begin and

end. The expression is compared to the alternatives in the order they are written. For the first

alternative that matches, the corresponding statement or block is executed. If none of the

alternatives matches, the default_statement is executed.

Placing of multiple default statements in one case statement is not allowed.

The default_statement is optional.

Task: Multiplexer

Develop a 2x1 multiplexer in which the two inputs are a and b, and each of them are 32-bits

wide, as shown in Figure 17.

39

Figure 17-2x1 multiplexer

Write a testbench to simulate its behavior in ModelSim.

Arithmetic and Logical Unit (ALU)

The arithmetic logic unit (ALU) is the brain of the computer, the device that performs the

arithmetic operations like addition and subtraction or logical operations like AND and OR.
Table 1-ALU operation

ALU Operation [2:0] Function

000 Add

001 Subtract

101 Set less than

011 Or

010 And

Task

You are required to develop a behavioral model of 32-bit ALU just by declaring a and b 32-bits

wide and declare the corresponding operations using a single multiplexer (refer Table 1). You

also need to add an additional output named ZERO in your 32-bit ALU, as shown in Figure 18.

The ZERO output should be set to 1 if the Result is 0, else set it to 0.

Figure 18-32-bit ALU with ZERO output

The behavioral model of ALU can be implemented using if-else or case structures.

a
32

d a t a _ o u t

b
32

s e l

Z e r o

R e s u l t

a

b

32

A L U O p e r a t i o n

32

32

32

40

Immediate Data Generator

Develop a module which takes the 32-bit input instruction and extracts the 12-bit

immediate data field depending on the type of instruction. Then sign-extend these 12-bits to 32-

bits output imm_data, as shown in Figure 19.

The immediate generation logic must choose between sign-extending a 12-bit field in instruction

bits 31:20 for load instructions, bits 31:25 and 11:7 for store instructions, or bits 31, 7, 30:25, and

11:8 for the conditional branch as shown in Table 2.

Table 2-ImmSrc encoding

ImmSrc ImmExt Type

00 {{20{instruction[31]}},instruction[31:20]} I

01 {{20{instruction[31]}},instruction[31:25],instruction[11:7]} S

10 {{20{instruction[31]}},instruction[7],instruction[30:25],instruction[11:8]} B

Write a testbench for this module and verify its functionality.

I m m e d i a t e

D a t a

E x t r a c t o r

i n s t r u c t i o n

3 2

i m m _ d a t a

32

ImmSrc [1:0]

Figure 19-Immediate_data_generator module

41

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL - 421 Embedded Electronics

Laboratory Session No. _____________ Date: ______________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of

software menu

(syntax, components,

commands, tools,

layout etc.).

Can‟t identify

software menus.

Rarely identifies

software menus.

Occasionally

identifies

software menus.

Able to identify

software menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools,

layout) efficiently.

Can‟t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands,

tools, layout)

Adherence to safety

procedures and

handling of equipment

(computing unit,

peripheral devices,

and other equipment

in lab).

Doesn‟t handle

equipment with

required care and

safety.

Rarely handles

equipment with

required care and

safety.

Occasionally

handles

equipment with

required care and

safety.

Often handles

equipment with

required care

and safety.

Handles

equipment with

required care and

safety.

Ability to

troubleshoot software

errors (detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot the

errors

Occasionally

able to

troubleshoot the

errors

Often able to

troubleshoot the

errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to perform

the analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)
Remarks

Instructor‟s Signature with

Date:

42

Lab Experiment 07
Objective: To implement Register file for 32-bit RISC-V processor.

Register File

Register files are necessary for computer memory. For a computer to be able to function, it needs

to have some form of memory. There are two different forms of memory devices: external

memory devices and local memory devices. External memory devices are items such as RAM,

ROM, disk drives, etc. Registers provide local memory, which allows for temporary storage of

data that is about to be processed. For this lab, registers will be used to save and store numbers.

Task

Create a module named, registerFile, which should have input address ports for reading

register 1, register 2, and for writing data in a destination register. Furthermore, it should have a

32-bits data input port, and two 32-bits data output ports to read the values from two different

registers. Finally, it should have a clk, and a RegWrite signal which controls when the data

should be written to a register. You need to define 32 32-bit internal registers.

The top-level diagram of this module is shown in the figure below.

Figure 20-Register File

 As an example, the following command creates an Array of type reg containing 10 elements,

each of which are 5 bits wide.

reg [4:0] Array [9:0]

Where Array is the name of a variable. In your case, it should be Registers.

Design Requirements

 Initialize Registers with random values.

Use initial block to initialize the Registers with any random value.

To verify correct functioning of your design using test bench, make sure

that different values are initialized in different Registers.

32
W r i t e D a t a

5
R S 1

5
R S 2

5
R D

R e g W r i t e

32

R e a d D a t a 1

32
R e a d D a t a 2

r e g i s t e r F i l e

c l k

43

 The operation of writing data into a Registers should always be done when there is a

positive edge of clk and RegWrite signal is asserted (or set i.e. HIGH).

 Reading a data from the register file should be made independent of clk signal. Reading

should rather be sensitive to the change in inputs RS1, RS2, or Registers.

Create a test bench to verify the correct functioning of designed module in ModelSim.

44

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL - 421 Embedded Electronics

Laboratory Session No. _____________ Date: ______________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of

software menu

(syntax, components,

commands, tools,

layout etc.).

Can‟t identify

software menus.

Rarely identifies

software menus.

Occasionally

identifies

software menus.

Able to identify

software menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools,

layout) efficiently.

Can‟t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands,

tools, layout)

Adherence to safety

procedures and

handling of equipment

(computing unit,

peripheral devices,

and other equipment

in lab).

Doesn‟t handle

equipment with

required care and

safety.

Rarely handles

equipment with

required care and

safety.

Occasionally

handles

equipment with

required care and

safety.

Often handles

equipment with

required care

and safety.

Handles

equipment with

required care and

safety.

Ability to

troubleshoot software

errors (detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot the

errors

Occasionally

able to

troubleshoot the

errors

Often able to

troubleshoot the

errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to perform

the analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)
Remarks

Instructor‟s Signature with

Date:

45

Lab Experiment 08
Objective: To implement instruction and data memory Verilog modules for 32-bit RISC-V

processor.

Instruction Memory

Instruction and Data memories are essential components of a processor. We will develop
modules for the Instruction and Data memory separately. The instruction memory is used to store
instructions. During the processor execution, it is required to only read the instruction from the
instruction memory and not to write any data or instruction in it. Hence, we could say that the
instruction memory is the read-only memory. However, the data memory is used to both read
and write data.
Recall that the size of each instruction is 32-bits. Each location in instruction and data memory is
32-bits (4 bytes) wide.

In this lab, we will design an instruction memory with each location 8-bits wide. Hence, four

memory locations will be required to store a 32-bit instruction in an instruction memory, as

shown in Figure 21.

Figure 21-8xN bytes instruction memory, where N specify the number of n memory locations each of which are 8-bits (or 1-byte)
wide

Task

Design a module named, Instruction_Memory, having a 32-bit input, Inst_Address,

and a 32-bit output, Instruction. Now, declare a 1x16 bytes instruction memory using .mif

file and initialized its contents as shown in Figure 22-Memory contentsFigure 22. The behavior of

this module should be designed as such that whenever an Inst_Address field is changed, the

32-bit instruction corresponding to the Inst_Address should appear at the 32-bit output port,

Instruction.

46

15 11111110

14 01000010

13 00001010

12 11100011

11 00000000

10 01100010

9 11100010

8 00110011

7 00000000

6 01100100

5 10100100

4 00100011

3 11111111

2 11000100

1 10100011

0 00000011

Figure 22-Memory contents

For example, if the Inst_Address is 0, the consecutive 4 bytes (byte no. 0 to 3)

should appear at the 32-bit Instruction output. Similarly, when the value of

Inst_Address is 8, the corresponding next four bytes (8 to 11) should be placed

at the 32-bit output port, Instruction.

While placing four bytes on the 32-bit Instruction port, make sure that the
bytes are in correct order. That is, the least-significant byte should be the right most
byte and that the most-significant byte should be the left most byte in the 32bit

Instruction output.

Write a testbench and verify the functionality of this module.

Data memory

The top-level diagram of a Data Memory is shown in Figure 23. Write a module named,

Data_Memory, with inputs and outputs as shown in Figure 23. The signals shown in blue color

are the control signals. We will design the control unit in upcoming labs.

The data at the input port, Write_Data, should only be written at the positive edge of clk signal

and when MemWrite signal is asserted (i.e. High). The data can be read from memory at any

instant whenever the Mem_Addr value changes.

Initialized the memory with random data, write a testbench and verify its functionality.

47

Figure 23-IOs of Data Memory module. There are 64 memory locations, each of which is 1 byte wide.

D a t a
 M e m o r y

1 x 6 4

(b y t e s)

R e a d _ D a t a

32

M e m _ A d d r

32

W r i t e _ D a t a

32

c l k M e m W r i t e

48

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL - 421 Embedded Electronics

Laboratory Session No. _____________ Date: ______________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of

software menu

(syntax, components,

commands, tools,

layout etc.).

Can‟t identify

software menus.

Rarely identifies

software menus.

Occasionally

identifies

software menus.

Able to identify

software menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools,

layout) efficiently.

Can‟t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands,

tools, layout)

Adherence to safety

procedures and

handling of equipment

(computing unit,

peripheral devices,

and other equipment

in lab).

Doesn‟t handle

equipment with

required care and

safety.

Rarely handles

equipment with

required care and

safety.

Occasionally

handles

equipment with

required care and

safety.

Often handles

equipment with

required care

and safety.

Handles

equipment with

required care and

safety.

Ability to

troubleshoot software

errors (detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot the

errors

Occasionally

able to

troubleshoot the

errors

Often able to

troubleshoot the

errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to perform

the analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)
Remarks

Instructor‟s Signature with

Date:

49

Lab Experiment 09
Objective: To implement Verilog module for instruction fetch data path.

Instruction Fetch Data Path

A reasonable way to start a data path design is to examine the major components required to

execute each class of RISC-V instructions. First, an instruction has to be fetched, which requires

the components shown in Figure 24.

Figure 24-Required components for fetching a processor instruction

As shown in Figure 24, two state elements are needed to store and access instructions, and an

adder is needed to compute the next instruction address. The state elements are the instruction

memory and the program counter. The instruction memory need only provide read access

because the datapath does not write instructions. Since the instruction memory only reads, we

treat it as combinational logic: the output at any time reflects the contents of the location

specified by the address input, and no read control signal is needed. The program counter is a

32-bit register that is written at the end of every clock cycle and thus does not need a write

control signal. The adder is an ALU wired to always add its two 32-bit inputs and place the sum

on its output.

Implementation

We have already developed an instruction memory in Lab07. Now, we will start off with

developing the separate modules of a program counter (PC) and a two-input adder.

Task (s)

1. Write a module, named Program_Counter, which takes three inputs – clk, a 32-bit

input, PC_In and reset; and a 32-bit output, PC_Out. Initialize PC_Out to 0 if reset

signal is high, else reflect the value of PC_In to PC_Out, at the positive edge of clock.

2. Adder takes two 32-bits inputs, a and b; add them, and reflect the results at the 32-bit output

port, out.

3. Now connect the above two modules and an Instruction_Memory (developed in

Lab07) to construct an instruction fetch datapath as shown below. Name the module

50

Instruction_Fetch; instantiate all three modules and make necessary connections as

shown in Figure 25.

Figure 25-Instruction fetch datapath

Write a testbench and verify the functionality of instruction fetch datapath.

P C

c l k

r e s e t

I n s t r u c t i o n _ F e t c h

c l k

r e s e t
I n s t r u c t i o n

P C _ I n P C _ O u t

a

b

o u t A d d

51

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL - 421 Embedded Electronics

Laboratory Session No. _____________ Date: ______________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of

software menu

(syntax, components,

commands, tools,

layout etc.).

Can‟t identify

software menus.

Rarely identifies

software menus.

Occasionally

identifies

software menus.

Able to identify

software menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools,

layout) efficiently.

Can‟t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands,

tools, layout)

Adherence to safety

procedures and

handling of equipment

(computing unit,

peripheral devices,

and other equipment

in lab).

Doesn‟t handle

equipment with

required care and

safety.

Rarely handles

equipment with

required care and

safety.

Occasionally

handles

equipment with

required care and

safety.

Often handles

equipment with

required care

and safety.

Handles

equipment with

required care and

safety.

Ability to

troubleshoot software

errors (detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot the

errors

Occasionally

able to

troubleshoot the

errors

Often able to

troubleshoot the

errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to perform

the analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)
Remarks

Instructor‟s Signature with

Date:

52

Lab Experiment 10
Objective: To implement Verilog module for Control unit of RISC-V processor.

Introduction

The last module we are left with is the control unit, which we have to design before we proceed

further to integrate the already-designed processor components. In this lab, we will develop a

module for generating control signals for specific instructions. These control signals are used to

control the data flow and enabling or disabling the modules which are not needed for specific

instructions.

Control Unit

Besides control unit, we also have to develop ALU Control unit to set the control signals of

ALU.

Task(s)

1. As shown in Figure 26, write a module, namedControl_Unit, which takes a 7-bit wide

input, named Opcode, and generate 7 output signals. Out of these seven outputs, one is

ALUOp which is 2-bits wide, and the remaining six are 1-bit wide, which are Branch,

MemRead, MemtoReg, MemWrite, ALUSrc, and RegWrite.

Figure 26-I/O diagram of Control Unit

The behavior of Control_Unit module should be designed according to the Table 3.

Table 3-This table shows how the control signals are set based on the input values of Opcode

Instruction
Type

Opcode ALUSrc ResultSrc
ImmSrc
[1:0]

RegWrite MemWrite Branch
ALUOp
[1:0]

R-Type 0110011 0 0 XX 1 0 0 10

I-Type (lw) 0000011 1 1 00 1 0 0 00

O p c o d e
2

B r a n c h

A L U O p

M e m W r i t e

A L U S r c

R e g W r i t e

C o n t r o l _ U n i t
7

2

53

I-Type (sw) 0100011 1 X 01 0 1 0 00

SB-Type (beq) 1100011 0 X 10 0 0 1 01

R-Type (addi) 0010011 1 0 00 1 0 0 10

2. Write a module, named ALU_Control, which takes single bit input funct75, a 2-bit

input, named ALUOp, and a 3-bit input, named Funct32:0, and produces a 3-bit output,

named ALUControl, as shown in Figure 27.

Figure 27-I/O diagram of ALU_Control module

The values of the output, ALUControl, should be set based on the input signals,

ALUOp,Funct3 and funct7, as shown in Table 4.

Table 4-ALU_Control truth table

Instruction Type
ALUOp

[1:0]
[op5, funct75] Funct3 ALUControl

I/S-Type (ld, sd) 00 X xxx 000 (add)

SB-Type (Beq) 01 X xxx 001 (subtract)

R-Type 10

00,01,10 000 000 (add)

11 000 001 (subtract)

X 010 101 (set less than)

X 110 011 (or)

X 111 010 (and)

A L U O p

3

O p e r a t i o n

A L U _ C o n t r o l
2

F u n c t3

3

Funct7

op

54

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL - 421 Embedded Electronics

Laboratory Session No. _____________ Date: ______________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of

software menu

(syntax, components,

commands, tools,

layout etc.).

Can‟t identify

software menus.

Rarely identifies

software menus.

Occasionally

identifies

software menus.

Able to identify

software menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools,

layout) efficiently.

Can‟t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands,

tools, layout)

Adherence to safety

procedures and

handling of equipment

(computing unit,

peripheral devices,

and other equipment

in lab).

Doesn‟t handle

equipment with

required care and

safety.

Rarely handles

equipment with

required care and

safety.

Occasionally

handles

equipment with

required care and

safety.

Often handles

equipment with

required care

and safety.

Handles

equipment with

required care and

safety.

Ability to

troubleshoot software

errors (detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot the

errors

Occasionally

able to

troubleshoot the

errors

Often able to

troubleshoot the

errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to perform

the analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)
Remarks

Instructor‟s Signature with

Date:

55

Lab Experiment 11
Objective: To implement a single-cycle RISC processor by integrating previously designed

Verilog modules.

Introduction

We have developed all the necessary modules of a single cycle processor. We can now combine

all the pieces to make a simple data path for the core RISC-V architecture to run specific set of

instructions, which include R-Type, I-Type and Branch-Type instructions.

Task(s)

In this lab, we will use the modules developed in the previous labs and integrate them together to

construct a single-cycle data path processor. Copy the following modules in a new folder, named

Lab11

1. Mux.v from /Lab05 folder

2. ImmGen.v, ALU.v from /Lab06 folder.

3. RegisterFile.v from /Lab07 folder.

4. Data_Memory.v and Instruction_Memory.v from /Lab08 folder.

5. Program_Counter.v and Adder.v from /Lab09 folder.

6. ALU_Control.v and Control_Unit.v from /Lab10 folder.

Figure 28-Single Cycle Processor

Now integrate all the above modules in a top module named, RISC_V_Processor,

according to the processor diagram shown in Figure 28. The inputs to the top-level module are

clk and reset, and there is no output.

56

Load instruction memory with the contents shown below

1. Write a testbench. Initialize the simulation by first resetting the module under test for,

say, 10ns. Toggle the clock signal at every 5ns.

2. Calculate the expected results of decoded instructions using the contents of registers and

memory array initialized in modules. Compare them with the simulation results and

briefly describe.
Since the top module doesn't have any particular output, so you can verify results by observing the
following signals:

Instruction Address
Instruction
WriteData
ReadData1, ReadData2
Data_Memory Read Data

57

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL - 421 Embedded Electronics

Laboratory Session No. _____________ Date: ______________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of

software menu

(syntax, components,

commands, tools,

layout etc.).

Can‟t identify

software menus.

Rarely identifies

software menus.

Occasionally

identifies

software menus.

Able to identify

software menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools,

layout) efficiently.

Can‟t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands,

tools, layout)

Adherence to safety

procedures and

handling of equipment

(computing unit,

peripheral devices,

and other equipment

in lab).

Doesn‟t handle

equipment with

required care and

safety.

Rarely handles

equipment with

required care and

safety.

Occasionally

handles

equipment with

required care and

safety.

Often handles

equipment with

required care

and safety.

Handles

equipment with

required care and

safety.

Ability to

troubleshoot software

errors (detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot the

errors

Occasionally

able to

troubleshoot the

errors

Often able to

troubleshoot the

errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to perform

the analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

Weighted CLO (Score)
Remarks

Instructor‟s Signature with

Date:

58

Lab Experiment 12
Objective: To implement Verilog module for SPI communication between FPGA and a

peripheral.

Introduction

Serial Peripheral Interface (SPI) is a simple synchronous serial protocol that is easy to use and

relatively fast. The physical interface consists of three pins: serial clock (SCK), serial data out

(SDO), and serial data in (SDI). SPI connects a controller device to a peripheral device, as shown

in Figure 29(a). The controller produces the clock. It initiates communication by sending clock

pulses on SCK. The controller sends data from its SDO pin to the peripheral‟s SDI pin one bit

per cycle, starting with the most significant bit. The peripheral may simultaneously respond with

its SDO pin back to the controller‟s SDI pin. Figure 29(b) shows the SPI waveforms for an 8-bit

data transmission. Bits change on the falling edge of SCK and are stable to sample on the rising

edge. The SPI interface may also send an active-low chip enable to alert the receiver that data is

coming.

Figure 29-SPI configuration: (a) SPI controller-peripheral connection diagram, (b) Example SPI data signals

Task

HDL Example code below gives the Verilog code for an SPI peripheral that can both send and

receive data (i.e., an SPI transceiver), and Figure 30 shows its block diagram and timing with

CPHA = CPOL = 0. The main component is still a shift register, shown on the right of Figure 30.

The shift register parallel loads the byte to send (d[7:0]) into the shift register and then shifts out

this data on sdo while it shifts in data transmitted from the controller (t[7:0]) on sdi. A counter,

cnt, keeps track of how many bits have been sent/received. When sck is idle, cnt = 0 and the

most significant bit of d (d[7]) sits on the sdo wire. One subtlety is that sdo can only change on

59

Example SPI Verilog HDL code

module spi_peripheral(input logic sck, // From controller

input logic sdi, // From controller

output logic sdo, // To controller

input logic reset, // System reset

input logic [7:0] d, // Data to send

output logic [7:0] q); // Data received

logic [2:0] cnt;

logic qdelayed;

// 3-bit counter tracks when full byte is transmitted

always_ff @(negedge sck, posedge reset)

if (reset)

cnt = 0;

else

cnt = cnt + 3’b1;

// Loadable shift register

// Loads d at the start, shifts sdi into bottom on each step

always_ff @(posedge sck)

q < = (cnt = = 0) ? {d[6:0], sdi} : {q[6:0], sdi};

// Align sdo to falling edge of sck

// Load d at the start

always_ff @(negedge sck)

qdelayed = q[7];

assign sdo = (cnt == 0) ? d[7] : qdelayed;

endmodule

the falling clock edge, so the sdo output (which is the most significant bit of the shift register,

q[7], is delayed by half a clock cycle by the negative-edge triggered qdelayed register on the

bottom left of Figure 30.

60

Figure 30- Block and timing diagram for SPI peripheral on FPGA

Reference

Harris, D., & Harris, S. (2010). Digital design and computer architecture. Morgan Kaufmann.

61

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL - 421 Embedded Electronics

Laboratory Session No. _____________ Date: ______________________

 Software Use Rubric

Criterion

Level of Attainment

Below Average

(1)

Average

(2)

Good

(3)

Very Good

(4)

Excellent

(5)

Identification of

software menu

(syntax, components,

commands, tools,

layout etc.).

Can‟t identify

software menus.

Rarely identifies

software menus.

Occasionally

identifies

software menus.

Able to identify

software menus.

Perfectly able to

identify software

menus.

Skills to use software

(schematic, syntax,

commands, tools,

layout) efficiently.

Can‟t use

software

efficiently.

Rarely uses

software

efficiently.

Occasionally

uses software

efficiently.

Often uses

software

efficiently.

Efficiently uses

software (syntax,

commands,

tools, layout)

Adherence to safety

procedures and

handling of equipment

(computing unit,

peripheral devices,

and other equipment

in lab).

Doesn‟t handle

equipment with

required care and

safety.

Rarely handles

equipment with

required care and

safety.

Occasionally

handles

equipment with

required care and

safety.

Often handles

equipment with

required care

and safety.

Handles

equipment with

required care and

safety.

Ability to

troubleshoot software

errors (detection and

debugging).

Not able to

troubleshoot the

errors

Rarely able to

troubleshoot the

errors

Occasionally

able to

troubleshoot the

errors

Often able to

troubleshoot the

errors

Fully able to

troubleshoot the

errors

Analysis and

interpretation of

results/outputs.

Not able to

analyze and

interpret

results/outputs.

Rarely able to

perform the

analysis and

interpretation.

Occasionally

able to perform

the analysis and

interpretation.

Often able to

perform the

analysis and

interpretation.

Perfectly able

to perform the

analysis and

interpretation.

b.

Weighted CLO (Score)
Remarks

Instructor‟s Signature with

Date:

62

Lab Experiment 13 (Open-ended Lab)
Objective: To build a 5-stage RISC-V pipelined processor capable of executing provided

assembly instructions.

Background

The speed of a system is characterized by the latency and throughput of information moving

through it. We define a token to be a group of inputs that are processed to produce a group of

outputs. The term conjures up the notion of placing subway tokens on a circuit diagram and

moving them around to visualize data moving through the circuit. The latency of a system is the

time required for one token to pass through the system from start to end. The throughput is the

number of tokens that can be produced per unit time. As you might imagine, the throughput can

be improved by processing several tokens at the same time. This is called parallelism, which

comes in two forms: spatial and temporal. With spatial parallelism, multiple copies of the

hardware are provided so that multiple tasks can be done at the same time. With temporal

parallelism, a task is broken into stages, like an assembly line. Multiple tasks can be spread

across the stages. Although each task must pass through all stages, a different task will be in each

stage at any given time, so multiple tasks can overlap. Temporal parallelism is commonly called

pipelining. Spatial parallelism is sometimes just called parallelism.

We design a pipelined processor by subdividing the single-cycle processor into five pipeline

stages. Thus, five instructions can execute simultaneously, one in each stage. Because each stage

has only one-fifth of the entire logic, the clock frequency is approximately five times faster. So,

ideally, the latency of each instruction is unchanged, but the throughput is five times better.

Microprocessors execute millions or billions of instructions per second, so throughput is more

important than latency. Figure 31 shows 5 stage pipelined RISC-V processor with control signals.

Write Verilog implementation of provided RISC-V pipelined processor.

63

Figure 31-Pipelined processor with Control

Submission Deliverables:

1. You will submit all your codes (the Verilog files for modules as well as test benches) task

wise.

2. You will submit a PDF report containing explanations of how you implemented your

processor, test cases and results, any difficulties you had and how you overcame them, and

any deficiencies in your projects if there are any. Also, add all the codes in appendices.

64

Assembly Instructions to execute:

Reference

Harris, D., & Harris, S. (2010). Digital design and computer architecture. Morgan Kaufmann.

addi x22,x0,0 # i - loop variable

addi x23,x0,0 # j- loop variable

addi x10,x0,10 # Maximum Loop count

To load the array

Loop1:

slli x24, x22, 2

sw x22,0x200(x24)

addi x22,x22,1

bne x22,x10,Loop1

addi x22,x0,0 # initializing loop variable i for #Loop2

Loop2:

slli x24, x22, 2 # i*4 for offset of array

add x23,x22,x0 # j=i, first value of j initialized for inner loop

 Loop3:

 slli x25, x23, 2 # j*4 for offset of array

 lw x1,0x200(x24) # a[i]

 lw x2,0x200(x25) # a[j]

bge x1,x2,EndIf # if a[i]>=a[j], then end the loop

if a[i]<a[j], then swap

add x5,x1,x0 # temp <- a[j]

 sw x2,0x200(x24) # a[i] <- a[j]

sw x5,0x200(x25) # a[j] <- temp

EndIf:

addi x23,x23,1

 bne x23,x10,Loop3 # Repeat Loop3 with next value of j

addi x22,x22,1 # Else end Loop3 and

bne x22,x10,Loop2 # and go to Loop 2 with next value of i

65

F/OBEM 01/18/00

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL - 421 Embedded Electronics

Laboratory Session No. _____________ Date: ______________________

Psychomotor Domain Assessment Rubric-Level P3

Skill Sets
Extent of Achievement

0 1 2 3 4

Pipelined

processor

implementation

Not implemented. Incorrect

logic/pipeline

register modules.

Incomplete

implementation

/few conditions are

not included.

Implemented with

few errors.

Correctly

implemented.

Reporting the

results

Results are not

discussed.

Many observations

are not reported.

Some significant

observations are

missed but report

covers overall

objective of the lab

session. Results are

briefly discussed.

Few relevant

observations are

missed. Results are

discussed.

All relevant

observations are

reported and results

are thoroughly

assessed.

Group Work Doesn't participate

and contribute.

Slightly participates

and contributes.

Somewhat

participates and

contributes.

Moderately

participates and

contributes.

Fully participates

and contributes.

Weighted CLO (Psychomotor

Score)

Remarks

Instructor‟s Signature with Date:

