

Department of Electronic Engineering

NED University of Engineering & Technology

PRACTICAL WORKBOOK

For the course of

Instrumentation & Control (EL-305)

For T.E (ME & PE)

Instructor’s Name:
Student’s Name:
Roll No.: Batch:
Semester: Year:
Department:

LABORATORY WORKBOOK FOR THE COURSE

Instrumentation & Control (EL-305)

Prepared By:

Miss Sidra Rahman (Lecturer)

Approved By:
The Board of Studies

Department of Electronic Engineering

3

CONTENTS

S. No Date
Cognitive /

Psychomotor
Level

CLO List of Experiments Page
No. Signature

1. P3
4

Introduction of MATLAB briefly including tutorial of
polynomials, script writing and programming aspect of
MATLAB from control systems viewpoint.

4

2. P3 4 Implement the designing and analysis of mathematical
models of physical control systems 8

3. P3 4 Build the mathematical modeling of Multiple-
Element Mechanical Translation System 13

4. P3 4 Practice mathematical modeling of Electrical System 17

5. P3 4
Implement the performance of First order and
Second order systems and development of Time
response specification’s function

21

6. P3 4 Try the process to generate the response of Control System
to Ramp and Arbitrary Inputs 26

7. P3 4
Try to learn commands in MATLAB that would be used to
reduce linear systems block diagram using series, parallel
and feedback configuration.

29

8. P3 4 Practice to analyze the System Stability using MATLAB 34

9. P3 4
Trace the characteristics of the each of proportional (P), the
integral (I), and the derivative (D) controls and obtain a
desired response by using them.

37

10. P3 4
Build the designing of P, PD, PI, and PID controllers to
meet closed-loop performance specifications including
transient performance and steady error.

42

11. P3 4 Derive the relationship between frequency response and
step response characteristics using MATLAB 45

12. P3 4 Do the plotting of Root Loci with MATLAB 49

13. P3 4 Design control system for ball and beam system for

the stated requirements. (Open ended lab) 54

4

Lab Experiment # 01

Objective:
Introduction of MATLAB briefly including tutorial of polynomials, script writing and programming aspect of MATLAB
from control systems viewpoint.

Equipment:
PCs with installed MATLAB

Theory:
The name MATLAB stands for MATrix LABoratory. MATLAB was written originally to provide easy access to matrix
software developed by the LINPACK (linear system package) and EISPACK (Eigen system package) projects.
MATLAB is a high-performance language for technical computing. It integrates Computation, visualization, and
programming environment. Furthermore, MATLAB is a modern programming language environment: it has sophisticated
data structures, contains built-in editing and debugging tools, and supports object-oriented programming. These factors
make MATLAB an excellent tool for teaching and research.
It has powerful built-in routines that enable a very wide variety of computations. It also has easy to use graphics commands
that make the visualization of results immediately available. Specific applications are collected in packages referred to as
toolbox. There are toolboxes for signal processing, symbolic computation, control theory, simulation, optimization, and
several other fields of applied science and engineering.

Starting MATLAB:
After logging into account, double-click on the MATLAB shortcut icon (MATLAB) on Windows desktop. A special
window called the MATLAB desktop appears. The desktop is a window that contains other windows. The major tools
within or accessible from the desktop are: The Command Window the Command History the Workspace the Current
Directory the Help Browser the Start button

Figure 1. 1 the desktop window of MATLAB

5

A Matrix array is two-dimensional, having both multiple rows and multiple columns, like vector arrays:
It begins with [, and end with] spaces or commas are used to separate elements in a row. semicolon or enter is used to
separate rows.
Example:

>> f = [1 2 3; 4 5 6]
f =

1 2 3
4 5 6

A system of 3 linear equations with 3 unknowns (x1, x2, x3):

3𝑥𝑥1 + 2𝑥𝑥2 − 𝑥𝑥3 = 10
𝑥𝑥1 + 3𝑥𝑥2 + 2𝑥𝑥3 = 5
𝑥𝑥1 − 𝑥𝑥2 − 𝑥𝑥3 = −1

𝐴𝐴 = �
3 2 1
−1 3 2
1 −1 −1

� 𝑥𝑥 = �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� 𝑏𝑏 = �

10
5
−1

�

Some useful commands:

Plotting Curves:
plot (x,y)– generates a linear plot of the values of x (horizontal axis) and y (vertical axis).
semilogx (x,y) – generate a plot of the values of x and y using a logarithmic scale for x and a linear
scale for y
semilogy (x,y) – generate a plot of the values of x and y using a linear scale for x and a logarithmic
scale for y.
loglog(x,y) – generate a plot of the values of x and y using logarithmic scales for both x and y
Adding new curves to the existing graph:
Use the hold command to add lines/points to an existing plot.
hold on – retain existing axes, add new curves to current axes. Axes are rescaled when necessary.
hold off – release the current figure window for new plot

Table 1. 1 Some Useful Commands

6

Grids & Labels:

Polynomial Evaluation:
Table 1. 3 Polynomial Functions

Scripts:
Scripts do not accept input arguments or return output arguments. They operate on data in the workspace.
MATLAB provides a full programming language that enables you to write a series of MATLAB statements
into a file and then execute them with a single command. You write your program in an ordinary text file,
giving the file a name of ‘filename.m’. The term you use for ‘filename’ becomes the new command that
MATLAB associates with the program. The file extension of .m makes this a MATLAB M-file.

Functions:
which can accept input arguments and return output arguments. Internal variables are local to the function.
If you're a new MATLAB programmer, just create the M-files that you want to try out in the current directory.
As you develop more of your own M-files, you will want to organize them into other directories and personal
toolboxes that you can add to your MATLAB search path. If you duplicate function names, MATLAB
executes the one that occurs first in the search path.

Task:

1. Consider the two polynomials 𝑝𝑝(𝑠𝑠) = 𝑠𝑠2 + 2𝑠𝑠 + 1 & 𝑞𝑞(𝑠𝑠) = 𝑠𝑠 + 1
Use MATLAB to compute

a. 𝑝𝑝(𝑠𝑠) ∗ 𝑞𝑞(𝑠𝑠)
b. Roots of p(s) and q(s)
c. p(-1) and q(6)

Use MATLAB command to find the partial fraction:
𝐵𝐵(𝑠𝑠)
𝐴𝐴(𝑠𝑠)

=
2𝑠𝑠3 + 5𝑠𝑠2 + 3𝑠𝑠 + 6
𝑠𝑠3 + 6𝑠𝑠2 + 11𝑠𝑠 + 6

Command Description
grid on Adds dashes grid lines at the tick marks
grid off Remove grid lines (default)
grid Toggle grid status (off to on, or off to on)
title(‘text’) Labels top of plot with text in quotes
xlabel(‘text’) Labels horizontal (x) axis with text is quotes
ylabel(‘text’) Labels vertical (x) axis with text is quotes
text(x, y, ‘text’) Adds text in quotes to location (x, y) on the current axes, where (x, y)

is in units from the current plot.

Function Description
Conv Multiply polynomials
Deconv Divide polynomials
Poly Polynomial with specified roots
Polyder Polynomial derivative
Polyfit Polynomial curve fitting
Polyval Polynomial evaluation
Polyvalm Matrix polynomial evaluation
Residue Partial-fraction expansion (residues)
Roots Find polynomial roots

Table 1. 2 Grids & Labels

7

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL-305 Instrumentation & Control

Laboratory Session No. Date:

 Software Use Rubric

Criterion
Level of Attainment

Below Average
(1)

Average
(2)

Good
(3)

Very Good
(4)

Excellent
(5)

Identification of software
menu (syntax,
components, commands,
tools, layout etc.).

Can’t identify
software menus.

Rarely
identifies
software
menus.

Occasionally
identifies
software
menus.

Able to
identify
software
menus.

Perfectly able to
identify software
menus.

Skills to use software
(schematic, syntax,
commands, tools, layout)
efficiently.

Can’t use
software
efficiently.

Rarely uses
software
efficiently.

Occasionally
uses software
efficiently.

Often uses
software
efficiently.

Efficiently uses
software (syntax,
commands, tools,
layout)

Adherence to safety
procedures and handling
of equipment (computing
unit, peripheral devices,
and other equipment in
lab).

Doesn’t handle
equipment with
required care and
safety.

Rarely handles
equipment
with required
care and
safety.

Occasionally
handles
equipment
with required
care and
safety.

Often handles
equipment
with required
care and
safety.

Handles
equipment with
required care and
safety.

Ability to troubleshoot
software errors
(detection and
debugging).

Not able to
troubleshoot the
errors

Rarely able to
troubleshoot
the errors

Occasionally
able to
troubleshoot
the errors

Often able to
troubleshoot
the errors

Fully able to
troubleshoot the
errors

Analysis and
interpretation of
results/outputs.

Not able to
analyze and
interpret
results/outputs.

Rarely able to
perform the
analysis and
interpretation.

Occasionally
able to
perform the
analysis and
interpretation.

Often able to
perform the
analysis and
interpretation.

Perfectly able
to perform the
analysis and
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

8

Lab Experiment # 02

Objective:
Implement the designing and analysis of mathematical models of physical control systems

Equipment:
PCs with installed MATLAB

Theory:

Mass-Spring System Model
Consider the following Mass-Spring system shown in the figure. Where Fs(x) is the spring force Ff() is the
friction coefficient, x(t) is the displacement and Fa(t) is the applied force:

Figure 2. 1 Mass Spring System Model

𝑎𝑎 = 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)

= 𝑑𝑑𝑥𝑥(𝑡𝑡) is the acceleration dx(t) is the displacement
According to the laws of physics
Ma + 𝐹𝐹𝑓𝑓(v) + 𝐹𝐹𝑠𝑠(x) = 𝐹𝐹𝑎𝑎(t)
The differential equation for the above Mass-Spring system can then be written as follows

𝑀𝑀�
𝑑𝑑𝑥𝑥2

𝑑𝑑𝑡𝑡2� + 𝐵𝐵 �
𝑑𝑑𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡 � + 𝐾𝐾𝑥𝑥(𝑡𝑡) = 𝐹𝐹𝑎𝑎(𝑡𝑡)

B is called the friction coefficient and K is called the spring constant.
• B is called the friction coefficient and
• K is called the spring constant.

The linear differential equation of second order describes the relationship between the displacement and the
applied force. The differential equation can then be used to study the time behavior of x(t) under various
changes of the applied force. The spring force and/or the friction force can have a more complicated
expression or could be represented by a graph or data table

Solving the differential equation using MATLAB:
The objectives behind modeling the mass-damper system can be many and may include

• Understanding the dynamics of such system
• Studying the effect of each parameter on the system such as mass M, the friction

coefficient B, and the elastic characteristic Fs(x).
• Designing a new component such as damper or spring.
• Reproducing a problem in order to suggest a solution.

MATLAB can help solve linear or nonlinear ordinary differential equations (ODE). To show how you can
solve ODE using MATLAB we will proceed in two steps. We first see how we can solve first order and
second
Procedure:
Speed Cruise Control example:
When 𝐹𝐹𝑠𝑠(𝑥𝑥) = 0 which means that 𝐾𝐾 = 0, Equation (1) becomes

9

𝑀𝑀�
𝑑𝑑𝑥𝑥2

𝑑𝑑𝑡𝑡2� + 𝐵𝐵 �
𝑑𝑑𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡 � = 𝐹𝐹𝑎𝑎(𝑡𝑡)

or

𝑀𝑀�
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 � + 𝐵𝐵𝑑𝑑 = 𝐹𝐹𝑎𝑎(𝑡𝑡)

Using MATLAB solver, we can write the following:

create a MATLAB-function cruise_speed.m
function dvdt=cruise_speed(t, v) %flow rate M=750; %(Kg)
B=30; %(Nsec/m)
Fa=300; %N
% dv/dt=Fa/M-B/Mv dvdt =Fa/M-B/M*v;

create a new MATLAB m-file and write
v0= 0; %(initial speed)
[t,v]=ode45('cruise_speed', [0 200],v0);
plot(t,v);
grid on;
title('cruise speed time response to a constant traction force Fa(t) ')

Figure 2. 2 behavior of a car speed

In the above program the behavior of a car speed is shown in which the car starts with rest position, after that it
attains its maximum speed so that it reaches its maximum limit then after that its speed becomes constant
throughout the time.

Mass-Spring System Example:

𝑀𝑀�
𝑑𝑑2𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡2

� + 𝐵𝐵 �
𝑑𝑑𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡

� + 𝐾𝐾𝑥𝑥𝑟𝑟(𝑡𝑡) = 𝐹𝐹𝑎𝑎(𝑡𝑡)

Table 2. 1 System equations

Variables New Variables Differential Equation
x(t) X1 𝑑𝑑𝑋𝑋1

𝑑𝑑𝑡𝑡
= 𝑋𝑋2

10

dx(t)/dt X2 𝑑𝑑𝑋𝑋2
𝑑𝑑𝑡𝑡

= −
𝐵𝐵
𝑀𝑀
𝑋𝑋2 −

𝐾𝐾
𝑀𝑀

 𝑋𝑋1𝑟𝑟(𝑡𝑡) +
𝐹𝐹𝑎𝑎(𝑡𝑡)
𝑀𝑀

In vector form,

𝑋𝑋 = �𝑋𝑋1𝑋𝑋2
�, 𝑑𝑑𝑑𝑑

𝑑𝑑𝑡𝑡
= �

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑡𝑡
𝑑𝑑𝑋𝑋2
𝑑𝑑𝑡𝑡

�

The system equations can be written as:
𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

= −
𝐵𝐵
𝑀𝑀

 𝑋𝑋2 −
𝐾𝐾
𝑀𝑀

 𝑋𝑋1𝑟𝑟 (𝑡𝑡) +
𝐹𝐹𝑎𝑎(𝑡𝑡)
𝑀𝑀

create a MATLAB-function mass_spring.m function

𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

= 𝑚𝑚𝑎𝑎𝑠𝑠𝑠𝑠 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡,𝑋𝑋)
M=705; % (Kg)

B=30; % (Nsec/m)
Fa=300; % (N)
K=15; % (N/m)
r=1; % dX/dt
dXdt(1,1) =X(2);
dXdt(2,1) =-B/M*X(2)-K/M*X(1)^r+Fa/M;
program of mass spring system with r=1
clear all
close all
clc
X0= [0;0];% (Initial speed and position)
[t,X]=ode45('mass_spring',[0 200],X0); figure;
plot(t,X(:,1));
xlabel('Time(t)');
ylabel('Position');
title ('Mass spring system'); legend('Position ');
grid;
figure;
plot(t,X(:,2),'r'); xlabel('Time(t)');
label('Speed');
title ('Mass spring system');
legend ('Speed ');
grid;

Figure 2. 3 Behavior of Mass Spring System

11

Observations:

Table 2. 2 Behavior of Mass Spring System Function

Parameter Behavior of system
Mass

Friction
Coefficient

Stiffness

Applied
Force

12

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL-305 Instrumentation & Control

Laboratory Session No. Date:

 Software Use Rubric

Criterion
Level of Attainment

Below Average
(1)

Average
(2)

Good
(3)

Very Good
(4)

Excellent
(5)

Identification of software
menu (syntax,
components, commands,
tools, layout etc.).

Can’t identify
software menus.

Rarely
identifies
software
menus.

Occasionally
identifies
software
menus.

Able to
identify
software
menus.

Perfectly able to
identify software
menus.

Skills to use software
(schematic, syntax,
commands, tools, layout)
efficiently.

Can’t use
software
efficiently.

Rarely uses
software
efficiently.

Occasionally
uses software
efficiently.

Often uses
software
efficiently.

Efficiently uses
software (syntax,
commands, tools,
layout)

Adherence to safety
procedures and handling
of equipment (computing
unit, peripheral devices,
and other equipment in
lab).

Doesn’t handle
equipment with
required care and
safety.

Rarely handles
equipment
with required
care and
safety.

Occasionally
handles
equipment
with required
care and
safety.

Often handles
equipment
with required
care and
safety.

Handles
equipment with
required care and
safety.

Ability to troubleshoot
software errors
(detection and
debugging).

Not able to
troubleshoot the
errors

Rarely able to
troubleshoot
the errors

Occasionally
able to
troubleshoot
the errors

Often able to
troubleshoot
the errors

Fully able to
troubleshoot the
errors

Analysis and
interpretation of
results/outputs.

Not able to
analyze and
interpret
results/outputs.

Rarely able to
perform the
analysis and
interpretation.

Occasionally
able to
perform the
analysis and
interpretation.

Often able to
perform the
analysis and
interpretation.

Perfectly able
to perform the
analysis and
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

13

Lab Experiment # 03

Objective:
Build the mathematical modeling of Multiple-Element Mechanical Translation System

Equipment:
PCs with installed MATLAB

Theory:

Figure 3. 1 Multiple Element Mechanical System

where,
• f(t) is applied force to the mass M1.
• B1 and B2 are the viscous friction coefficients indicating the sliding friction between the masses M1 and M2 and

the surface

According to the rules for node equations:
For node a:

(𝑀𝑀1 𝐷𝐷2 + 𝐵𝐵1𝐷𝐷 + 𝐵𝐵3𝐷𝐷 + 𝐾𝐾1)𝑥𝑥𝑎𝑎 − (𝐵𝐵3𝐷𝐷)𝑥𝑥𝑏𝑏 = 𝑓𝑓

For node b:

(𝐵𝐵3 𝐷𝐷)𝑥𝑥𝑎𝑎 + (𝑀𝑀2𝐷𝐷2 + 𝐵𝐵2𝐷𝐷 + 𝐵𝐵3𝐷𝐷 + 𝐾𝐾2)𝑥𝑥𝑏𝑏 = 0

𝑋𝑋1 = 𝑋𝑋𝑏𝑏 for spring K2 𝑋𝑋2 = 𝑋𝑋`1 = 𝑉𝑉𝑏𝑏
𝑋𝑋3 = 𝑋𝑋𝑎𝑎 for spring K1 𝑋𝑋4 = 𝑋𝑋`3 = 𝑉𝑉𝑎𝑎

The system equations are:

Figure 3. 2 Multiple Element Mechanical System

14

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

0 1 0 0

−
𝐾𝐾2
𝑀𝑀2

𝐵𝐵2 + 𝐵𝐵3
𝑀𝑀2

0
𝐵𝐵3
𝑀𝑀2

0 0 0 1

0
𝐵𝐵3
𝑀𝑀1

−
𝐾𝐾1
𝑀𝑀1

𝐵𝐵1 + 𝐵𝐵3
𝑀𝑀1 ⎦

⎥
⎥
⎥
⎥
⎤

 , 𝑏𝑏 =

⎣
⎢
⎢
⎢
⎡

0
0
0
1
𝑀𝑀1⎦

⎥
⎥
⎥
⎤

Procedure:
1. create a MATLAB-function multiple_element_sys.m

function dXdt=multiple_element_sys (t,X)

K2=15;
%(N/m) dXdt(1,1)=X(2);
dXdt(2,1)=-K2/M2*X(1)-((B1+B2)/M2)*X(2)+B3*X(4)/M2; dXdt(3,1)=X(4);
dXdt(4,1)=B3/M1*X(2)-K1/M1*X(3)-((B1+B3)/M1)*X(4)+Fa/M1;
Write another M. file to call the function:
clear all;
 close all;
clc;
X0= [0;0;0;0]; % (Initial xb, Vb, xa, Va)
[t,X]=ode45('multiple_element_sys',[0 200],X0); figure;
Subplot (2,1,1);
 plot(t,X(:,1));
plot(t,X(:,2),'r');
xlabel('Time(t)');
ylabel ('Position xb / Speed Vb');
title ('Mass spring system');
legend ('xb', 'Vb'); grid;
subplot (2,1,2);
plot(t,X(:,3)); hold;
plot(t,X(:,4),'r');
xlabel('Time(t)');
ylabel('Position xa / Speed Va');
 title ('Mass spring system');
legend ('xa', 'Va');
grid;

Fa=300; %(N)
M1=750; %(Kg)
M2=750; %(Kg)
B1=20; %(Nsec/m)
B2=20; %(Nsec/m)
B3=30; %(Nsec/m)
K1=15; %(N/m)

15

Observations:
Table 3. 1 Behavior of Multiple Element Mechanical System

Task:
1. There is a mechanical rotational system consist of one flywheel J1 is attached by a flexible shaft Kr to ground and has an

applied torque Ꞇa. a second flywheel J2 is driven by friction between the two flywheels Br1. The second flywheel also has
friction to the ground Br2.

Figure 3. 4 Multiple Element Mechanical Rotational System

Parameter Behavior of system
Mass M1

M2

Friction
Coefficient

B1

 B2

 B3

Stiffness K1

 K2

Applied
Force

Fa

Figure 3. 3 Behavior of Multiple Element Mechanical System

16

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-305 Instrumentation & Control

Laboratory Session No. Date:

 Software Use Rubric

Criterion
Level of Attainment

Below Average
(1)

Average
(2)

Good
(3)

Very Good
(4)

Excellent
(5)

Identification of software
menu (syntax,
components, commands,
tools, layout etc.).

Can’t identify
software menus.

Rarely
identifies
software
menus.

Occasionally
identifies
software
menus.

Able to
identify
software
menus.

Perfectly able to
identify software
menus.

Skills to use software
(schematic, syntax,
commands, tools, layout)
efficiently.

Can’t use
software
efficiently.

Rarely uses
software
efficiently.

Occasionally
uses software
efficiently.

Often uses
software
efficiently.

Efficiently uses
software (syntax,
commands, tools,
layout)

Adherence to safety
procedures and handling
of equipment (computing
unit, peripheral devices,
and other equipment in
lab).

Doesn’t handle
equipment with
required care and
safety.

Rarely handles
equipment
with required
care and
safety.

Occasionally
handles
equipment
with required
care and
safety.

Often handles
equipment
with required
care and
safety.

Handles
equipment with
required care and
safety.

Ability to troubleshoot
software errors
(detection and
debugging).

Not able to
troubleshoot the
errors

Rarely able to
troubleshoot
the errors

Occasionally
able to
troubleshoot
the errors

Often able to
troubleshoot
the errors

Fully able to
troubleshoot the
errors

Analysis and
interpretation of
results/outputs.

Not able to
analyze and
interpret
results/outputs.

Rarely able to
perform the
analysis and
interpretation.

Occasionally
able to
perform the
analysis and
interpretation.

Often able to
perform the
analysis and
interpretation.

Perfectly able
to perform the
analysis and
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

17

Lab Experiment # 04

Objective:
Practice mathematical modeling of Electrical System

Equipment:
PCs with installed MATLAB

Theory:

e is applied p otential.
i is the mesh current.
The differential equations for the given figure.
According to Mesh Analysis:

e(𝑡𝑡) = 𝑉𝑉𝐿𝐿 + 𝑉𝑉𝐶𝐶 + 𝑉𝑉𝑅𝑅
𝑒𝑒(𝑡𝑡) = 𝐿𝐿𝐷𝐷𝑖𝑖 + 1

𝐶𝐶𝐶𝐶
𝑠𝑠 +iR

The state equations for the given figure.
This circuit contains two energy-storage elements, inductor, and capacitor
Let state variables are
𝑋𝑋1 = 𝑉𝑉𝐶𝐶the voltage across the capacitor and 𝑋𝑋2 = 𝐼𝐼 the current in the inductor.
State Equation:

�𝑥𝑥′1
𝑥𝑥′2

� = �
0

1
𝐶𝐶

−
1
𝐿𝐿

−
𝑅𝑅
𝐿𝐿

� �𝑥𝑥1
𝑥𝑥2� + �

0
1
𝐿𝐿
� [𝑢𝑢]

Procedure:
1. create a MATLAB-function RLC.m

function dXdt=RLC(t,X)
 e=60; % (V)
R=10; % (Ohm)
L=1; % (H)
C=10; % (F)
%dX/dt dXdt(1,1) =(1/C)*X(2)
dXdt(2,1) =(-1/L)*X(1)-(R/L)*X(2)+(1/L)*e;
Write an other M. file to call the function:

Figure 4. 1 Electrical System

18

clear all;
close all;
clc;
X0= [0 0];
[t,X] =ode45('RLC',[0 500],X0);
Subplot (2,1,1; plot(t,X(:,1));
legend('Vc'); gridon;
title('Vc');
subplot (2,1,2); plot(t,X(:,2), 'r ');
legend('i ');
grid on; title('i ');
Graph:
Time constant = RC = 10*10= 100 sec
For first time constant :
Vc=63.2% * e = 0.632*60 =37.92 V

Observations:

Table 4. 1 Behavior of Electrical System

Parameter Behavior of system
Voltage
source(e)

Resistance(R)

Inductance(L)

Capacitance(C)

Figure 4. 2 RC constant curve

19

Task:
Write the function and program of the following circuit diagram. Also explain the plots of the respective state variables.

Figure 4. 3 Electrical System

20

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-305 Instrumentation & Control

Laboratory Session No. Date:

 Software Use Rubric

Criterion
Level of Attainment

Below Average
(1)

Average
(2)

Good
(3)

Very Good
(4)

Excellent
(5)

Identification of software
menu (syntax,
components, commands,
tools, layout etc.).

Can’t identify
software menus.

Rarely
identifies
software
menus.

Occasionally
identifies
software
menus.

Able to
identify
software
menus.

Perfectly able to
identify software
menus.

Skills to use software
(schematic, syntax,
commands, tools, layout)
efficiently.

Can’t use
software
efficiently.

Rarely uses
software
efficiently.

Occasionally
uses software
efficiently.

Often uses
software
efficiently.

Efficiently uses
software (syntax,
commands, tools,
layout)

Adherence to safety
procedures and handling
of equipment (computing
unit, peripheral devices,
and other equipment in
lab).

Doesn’t handle
equipment with
required care and
safety.

Rarely handles
equipment
with required
care and
safety.

Occasionally
handles
equipment
with required
care and
safety.

Often handles
equipment
with required
care and
safety.

Handles
equipment with
required care and
safety.

Ability to troubleshoot
software errors
(detection and
debugging).

Not able to
troubleshoot the
errors

Rarely able to
troubleshoot
the errors

Occasionally
able to
troubleshoot
the errors

Often able to
troubleshoot
the errors

Fully able to
troubleshoot the
errors

Analysis and
interpretation of
results/outputs.

Not able to
analyze and
interpret
results/outputs.

Rarely able to
perform the
analysis and
interpretation.

Occasionally
able to
perform the
analysis and
interpretation.

Often able to
perform the
analysis and
interpretation.

Perfectly able
to perform the
analysis and
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

21

Lab Experiment # 05

Objective:
Implement the performance of First order and Second order systems and development of Time response specification’s
function

Equipment:
PCs with installed MATLAB

Theory:
An electrical RC-circuit is the simplest example of a first order system. It comprises of a resistor and capacitor connected
in series to a voltage supply as shown below on Figure

where,

• Vc(t) is the voltage across the capacitor,
• R is the resistance and
• C is the capacitance.

Obtain the transfer function of the above electrical circuit. (Take Vc as output and 𝑉𝑉𝑉𝑉(0) = 𝑉𝑉𝑜𝑜)
For the RC-circuit as shown in Fig. 1, the equation governing its behavior is given by :

𝑑𝑑𝑉𝑉𝑐𝑐(𝑡𝑡)
𝑑𝑑𝑡𝑡

+
1
𝑅𝑅𝐶𝐶

𝑉𝑉𝐶𝐶(𝑡𝑡) =
1
𝑅𝑅𝐶𝐶

 𝐸𝐸 𝑤𝑤ℎ𝑒𝑒𝑠𝑠𝑒𝑒 𝑉𝑉𝐶𝐶(0) = 𝑉𝑉𝑜𝑜

The constant is the time constant of the system and is defined as the time required by the system output i.e.
Vc(t) to rise to 63% of its final value (which is E). Hence the above equation

𝜏𝜏
𝑑𝑑𝑑𝑑𝐶𝐶(𝑡𝑡)
𝑑𝑑𝑡𝑡

+ 𝑉𝑉𝐶𝐶(𝑡𝑡) = 𝐸𝐸
Transfer Function:

Obtaining the transfer function of the above differential equation, we get
𝑉𝑉𝐶𝐶 (𝑠𝑠)
𝐸𝐸(𝑠𝑠)

=
1

𝜏𝜏𝑠𝑠 + 1

The above system is known as the first order system.
The performance measures of a first order system are its time constant and its steady state.

Second Order System:
Consider the following Mass spring system shown

Figure 5. 1 First Order Electrical System

22

where,

• K is the spring constant,
• B is the friction coefficient,
• x(t) is the displacement and
• F(t) is the applied force:

The differential equation for the above Mass-Spring system can be derived as follows:

𝑀𝑀�
𝑑𝑑𝑥𝑥2

𝑑𝑑𝑡𝑡2� + 𝐵𝐵 �
𝑑𝑑𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡 � + 𝐾𝐾𝑥𝑥(𝑡𝑡) = 𝐹𝐹(𝑡𝑡)

Transfer Function
Applying the Laplace transformation, we get

(𝑀𝑀𝑠𝑠2 + 𝐵𝐵𝑠𝑠 + 𝐾𝐾) ∗ 𝑋𝑋(𝑠𝑠) = 𝐹𝐹(𝑠𝑠)
Provided that, all the initial conditions are zero. Then the transfer function representation of the system is
given by:

𝑇𝑇𝐹𝐹 =
𝑂𝑂𝑢𝑢𝑡𝑡𝑝𝑝𝑢𝑢𝑡𝑡
𝐼𝐼𝑠𝑠𝑝𝑝𝑢𝑢𝑡𝑡

=
𝐹𝐹(𝑠𝑠)
𝑋𝑋(𝑠𝑠)

=
1

(𝑀𝑀𝑠𝑠2 + 𝐵𝐵𝑠𝑠 + 𝐾𝐾)

The above system is known as a second order system.
The generalized notation for a second order system described above can be written as:

𝑌𝑌(𝑠𝑠) =
𝜔𝜔𝑠𝑠2

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛 + 𝜔𝜔𝑠𝑠2
 𝑅𝑅(𝑠𝑠)

With the step input applied to the system, we obtain

𝑌𝑌(𝑠𝑠) =
𝜔𝜔𝑛𝑛2

𝑠𝑠(𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2)

For which the transient output, as obtained from the Laplace transform table

𝑦𝑦(𝑡𝑡) = 1 −
1

�1 − 𝜁𝜁2
 𝑒𝑒−𝜁𝜁𝜔𝜔𝑠𝑠𝑡𝑡 sin(𝜔𝜔𝑛𝑛�1 − 𝜁𝜁2𝑡𝑡 + cos−1(𝜁𝜁))

• where 0 < ζ < 1.
• The transient response of the system changes for different values of damping ratio, ζ.

Standard performance measures for a second order feedback system are defined in terms of step response of a system.

Figure 5. 2 Second Order Mechanical System

23

The performance measures could be described as follows

• Rise Time ‘Tr’:
measures the time from 10% to 90% of the response to the step input.

• Peak Time ‘Tp’:
The time for a system to respond to a step input and rise to peak response.

Overshoot:

The amount by which the system output response proceeds beyond the desired response.
It is calculated as

𝑃𝑃.𝑂𝑂. =
𝑀𝑀𝑝𝑝𝑡𝑡 − 𝑓𝑓𝑑𝑑

𝑓𝑓𝑑𝑑
∗ 100%

where MPt is the peak value of the time response, and fv is the final value of the response.
Settling Time ‘Ts’:

The time required for the system’s output to settle within a certain percentage of the input amplitude (which
is usually taken as 2%). Then, settling time, Ts, is calculated as

𝑇𝑇𝑠𝑠 =
4
𝜁𝜁
𝜔𝜔𝑛𝑛

Delay Time ‘Td’:
It is the time required for the response to reach 50% of the final value the very first time.

Observations:

1. Effect of damping ratio ‘ζ’ on performance measures of the second order system. Find the step
response of the system for values of ωn= 1 and ζ = 0.1, 0.4, 0.7, 1.0 and

2. Use Matlab code, plot all the results in the same figure window and fill the following table

Figure 5. 3 Response of Mechanical System

24

Task:

1. Given the values of .3re 5R and C, obtain the unit step response of the first order system.
a) R=2KΩ and C=0.01F
b) R=2.5KΩ and C=0.003F

Verify in each case that the calculated time constant (τ=RC) and the one measured from the figure as 63% of
the final value are same. Obtain the steady state value of the system.

Table 5. 1 Result of First Order Mechanical System

25

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-305 Instrumentation & Control

Laboratory Session No. Date:

 Software Use Rubric

Criterion
Level of Attainment

Below Average
(1)

Average
(2)

Good
(3)

Very Good
(4)

Excellent
(5)

Identification of software
menu (syntax,
components, commands,
tools, layout etc.).

Can’t identify
software menus.

Rarely
identifies
software
menus.

Occasionally
identifies
software
menus.

Able to
identify
software
menus.

Perfectly able to
identify software
menus.

Skills to use software
(schematic, syntax,
commands, tools, layout)
efficiently.

Can’t use
software
efficiently.

Rarely uses
software
efficiently.

Occasionally
uses software
efficiently.

Often uses
software
efficiently.

Efficiently uses
software (syntax,
commands, tools,
layout)

Adherence to safety
procedures and handling
of equipment (computing
unit, peripheral devices,
and other equipment in
lab).

Doesn’t handle
equipment with
required care and
safety.

Rarely handles
equipment
with required
care and
safety.

Occasionally
handles
equipment
with required
care and
safety.

Often handles
equipment
with required
care and
safety.

Handles
equipment with
required care and
safety.

Ability to troubleshoot
software errors
(detection and
debugging).

Not able to
troubleshoot the
errors

Rarely able to
troubleshoot
the errors

Occasionally
able to
troubleshoot
the errors

Often able to
troubleshoot
the errors

Fully able to
troubleshoot the
errors

Analysis and
interpretation of
results/outputs.

Not able to
analyze and
interpret
results/outputs.

Rarely able to
perform the
analysis and
interpretation.

Occasionally
able to
perform the
analysis and
interpretation.

Often able to
perform the
analysis and
interpretation.

Perfectly able
to perform the
analysis and
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

26

Lab Experiment # 06

Objective:
Try the process to generate the response of Control System to Ramp and Arbitrary Inputs

Equipment:
PCs with installed MATLAB

Procedure:
The ramp response of the following transfer function

30
𝑠𝑠2 + 5𝑠𝑠 + 6

There is no ramp command in MATLAB. However, ramp signal is one order higher than step signal. The step input
signal can be used to obtain the ramp response by dividing the transfer function by s and then evaluating it using the
step command. The following program can be used

close all; clear all; clc;
n= [0 0 30];
d= [1 5 6];
% The ramp response can be obtained by using step command for transfer
% function divided by s.The transfer function G1(s)=G(s)/s. n1=[0 0 0 30];
d1= [1 5 6 0];
[y,x,t]=step(n1,d1);
% To plot output y vs time t and t vs t i.e ramp signal on same graph window.
v=[0 10 0 10];
plot(t,y);
axis(v);
hold on;
plot(t,t);
grid;
title ('Plot of unit ramp response of G(s)=[30]/[s^2+5s+6]');
 xlabel('Time');

 ylabel ('Amplitude';

Figure 6. 1 Plot of unit ramp response

27

A closed-loop control system has a transfer function
𝑠𝑠 + 5

𝑠𝑠3 + 2𝑠𝑠2 + 3𝑠𝑠 + 5

Obtain the response of the system for an input r (t) =e^-0.2t, for t=0 to 9 sec, in steps of 0.15 sec
In case the input signal is not a standard signal, MATLAB command lsim can be used to obtain the response of the
system.
The syntax of the command is lsim(n,d,u,t)
Transfer Function:
u is the arbitrary input signal and t defines time for which response of the system is required.
Another form of this command, which gives the output y in vector form without response plot, is;

[y,t]=lsim(n,d,u,t)
The following program can be used:

n=[1 5];
d=[1 2 3 5];
t=0:0.15:9;
r=exp(-0.2*t);
y=lsim(n,d,r,t);
plot(t,r,'-',t,y,'o'); grid;
title('plot of the sysytem for arbitrary input r(t)=e-0.2t');
xlabel('Time');

 ylabel('Amplitude')

Amplitude

 Time

Task:

1. Obtain the ramp response of the following transfer function.
30

𝑠𝑠2 + 5𝑠𝑠 + 6

Obtain the response of the system for an input 𝑠𝑠(𝑡𝑡) = sin 𝑡𝑡 + 𝑒𝑒−0.2𝑡𝑡 𝑓𝑓𝑜𝑜𝑠𝑠 𝑡𝑡 = 0 𝑡𝑡𝑜𝑜 15 sec, in steps of 0.001 sec and
comment on the result.

Figure 6. 2 Plot of the system for Arbitrary input

28

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-305 Instrumentation & Control

Laboratory Session No. Date:

 Software Use Rubric

Criterion
Level of Attainment

Below Average
(1)

Average
(2)

Good
(3)

Very Good
(4)

Excellent
(5)

Identification of software
menu (syntax,
components, commands,
tools, layout etc.).

Can’t identify
software menus.

Rarely
identifies
software
menus.

Occasionally
identifies
software
menus.

Able to
identify
software
menus.

Perfectly able to
identify software
menus.

Skills to use software
(schematic, syntax,
commands, tools, layout)
efficiently.

Can’t use
software
efficiently.

Rarely uses
software
efficiently.

Occasionally
uses software
efficiently.

Often uses
software
efficiently.

Efficiently uses
software (syntax,
commands, tools,
layout)

Adherence to safety
procedures and handling
of equipment (computing
unit, peripheral devices,
and other equipment in
lab).

Doesn’t handle
equipment with
required care and
safety.

Rarely handles
equipment
with required
care and
safety.

Occasionally
handles
equipment
with required
care and
safety.

Often handles
equipment
with required
care and
safety.

Handles
equipment with
required care and
safety.

Ability to troubleshoot
software errors
(detection and
debugging).

Not able to
troubleshoot the
errors

Rarely able to
troubleshoot
the errors

Occasionally
able to
troubleshoot
the errors

Often able to
troubleshoot
the errors

Fully able to
troubleshoot the
errors

Analysis and
interpretation of
results/outputs.

Not able to
analyze and
interpret
results/outputs.

Rarely able to
perform the
analysis and
interpretation.

Occasionally
able to
perform the
analysis and
interpretation.

Often able to
perform the
analysis and
interpretation.

Perfectly able
to perform the
analysis and
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

29

Lab Experiment # 07

Objective:
Try to learn commands in MATLAB that would be used to reduce linear systems block diagram using series, parallel
and feedback configuration.

Equipment:
PCs with installed MATLAB

Theory:
Series Configuration
If the two blocks are connected as shown below then the blocks are said to be in series

It would like to multiply two transfer functions.
The MATLAB command for such configuration is “series”.
The series command is implemented as shown below:

Parallel configuration: If the two blocks are connected as shown below then the blocks are said to be in parallel. It
would like to add two transfer functions

It would like to add two transfer functions.
The MATLAB command for such configuration is “parallel”.
The parallel command is implemented as shown below

Figure 7. 1 Linear Systems connected in series

Figure 7. 2 Command implementation on series connected linear system

Figure 7. 3 Linear Systems connected in parallel

30

Feedback Configuration:
If the blocks are connected as shown below then the blocks are said to be in feedback

Notice that in the feedback there is no transfer function H(s) defined. Such a system is said to be a unity feedback system
The MATLAB command for implementing a feedback system is “feedback”.
The feedback command is implemented as shown below:

When H(s) is non-unity or specified, such a system is said to be a non-unity feedback system as shown below

Procedure:
Example 1:
Given the transfer functions of individual blocks generate the system transfer function of the block combination

>>numg=[1]; deng=[500 0 0]; sysg=tf(numg,deng);

Figure 7. 5 Linear System with unity Feedback

Figure 7. 6 Command implementation on linear system with feedback

Figure 7. 7 Linear System with non-unity Feedback

Figure 7. 8 Linear System with series configuration

Figure 7. 4 Command implementation on parallel connected linear system

31

>>numh=[1 1]; denh=[1 2]; sysh=tf(numh,denh);
>>sys=series(sysg,sysh);
>>sys
Transfer Function:

𝑠𝑠 + 1
500 𝑠𝑠3 + 1000 𝑠𝑠2

Example 2:
Given a unity feedback system as shown in the figure, obtain the overall transfer function using MATLAB

>>numg=[1]; deng=[500 0 0]; sys1=tf(numg,deng);
>>numc=[1 1]; denc=[1 2]; sys2=tf(numc,denc);
>>sys3=series(sys1,sys2);
>>sys=feedback(sys3,[1])
Transfer Function:

𝑠𝑠 + 1
500𝑠𝑠3 + 1000𝑠𝑠2 + 𝑠𝑠 + 1

𝑌𝑌(𝑠𝑠)
𝑅𝑅(𝑠𝑠)

=
𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺(𝑠𝑠)

1 + 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺(𝑠𝑠)

Example 3:
Given a non-unity feedback system as shown in the figure, obtain the overall transfer function using MATLAB

>>numg=[1]; deng=[500 0 0]; sys1=tf(numg,deng);
>>numh=[1 1]; denh=[1 2]; sys2=tf(numh,denh);
>>sys = feedback(sys1,sys2);
>>sys;
Transfer Function:

𝑠𝑠 + 1
500𝑠𝑠3 + 1000𝑠𝑠2 + 𝑠𝑠 + 1

𝑌𝑌(𝑠𝑠)
𝑅𝑅(𝑠𝑠)

=
𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺(𝑠𝑠)

1 + 𝐺𝐺𝑐𝑐(𝑠𝑠)𝐺𝐺(𝑠𝑠)

Figure 7. 9 Linear System with series configuration

Figure 7. 10 Linear System with parallel configuration

32

Task:
1. Obtain the overall transfer function using MATLAB

Figure 7. 11 Linear System with Multiple Feedback Blocks

2. Obtain the overall transfer function using MATLAB

Figure 7. 12 Linear System with Feedback Blocks

33

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-305 Instrumentation & Control

Laboratory Session No. Date:

 Software Use Rubric

Criterion
Level of Attainment

Below Average
(1)

Average
(2)

Good
(3)

Very Good
(4)

Excellent
(5)

Identification of software
menu (syntax,
components, commands,
tools, layout etc.).

Can’t identify
software menus.

Rarely
identifies
software
menus.

Occasionally
identifies
software
menus.

Able to
identify
software
menus.

Perfectly able to
identify software
menus.

Skills to use software
(schematic, syntax,
commands, tools, layout)
efficiently.

Can’t use
software
efficiently.

Rarely uses
software
efficiently.

Occasionally
uses software
efficiently.

Often uses
software
efficiently.

Efficiently uses
software (syntax,
commands, tools,
layout)

Adherence to safety
procedures and handling
of equipment (computing
unit, peripheral devices,
and other equipment in
lab).

Doesn’t handle
equipment with
required care and
safety.

Rarely handles
equipment
with required
care and
safety.

Occasionally
handles
equipment
with required
care and
safety.

Often handles
equipment
with required
care and
safety.

Handles
equipment with
required care and
safety.

Ability to troubleshoot
software errors
(detection and
debugging).

Not able to
troubleshoot the
errors

Rarely able to
troubleshoot
the errors

Occasionally
able to
troubleshoot
the errors

Often able to
troubleshoot
the errors

Fully able to
troubleshoot the
errors

Analysis and
interpretation of
results/outputs.

Not able to
analyze and
interpret
results/outputs.

Rarely able to
perform the
analysis and
interpretation.

Occasionally
able to
perform the
analysis and
interpretation.

Often able to
perform the
analysis and
interpretation.

Perfectly able
to perform the
analysis and
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

34

Lab Experiment # 08
Objective:
Practice to analyze the System Stability using MATLAB

Equipment:
PCs with installed MATLAB

Theory:
This section begins with a discussion of the Routh-Hurwitz stability method. We will see how the computer can assist
us in the stability analysis by providing an easy and accurate method for computing the poles of the characteristic
equation.
For the case of the characteristic equation as a function of a single parameter, it will be possible to generate a plot
displaying the movement of the poles as the parameter varies.

Routh Stability Analysis

As stated earlier, the Routh criterion is a necessary and sufficient criterion for stability. Given a characteristic equation
with fixed coefficients, we can use Routh-Hurwitz to determine the number of roots in the right half-plane.

Stability Design via Routh Criteria
Whenever the characteristic equation is a function of a single parameter, the Routh-Hurwitz method can be utilized to
determine the range of values that the parameter may take while maintaining stability.
Example:
Consider the closed-loop feedback system shown in Figure 1 with transfer function associated with the forward path as:

𝐺𝐺(𝑠𝑠) =
1

𝑠𝑠3 + 2𝑠𝑠2 + 4𝑠𝑠 + 𝐾𝐾

Figure 8. 1 Close Loop Control System

Figure 8. 2 Poles of Close loop system for the range of K<20

35

Using a Routh-Hurwitz approach, we find that we require 0 < 𝐾𝐾 < 7 for stability. We can verify this result
graphically. As shown in script file, we establish a vector of values for K at which we wish to compute the roots of the
characteristic equation. Then using the roots’ function, we calculate and plot the roots of the characteristic equation, as
shown in Figure. It can be seen that as K increases, the roots of the characteristic equation move toward the right half-
plane as the gain tends toward 𝐾𝐾 = 7, and eventually into the right half-plane when 𝐾𝐾 > 7
The MATLAB script contains for loop. This function provides a mechanism for repeatedly executing a series of
statements a given number of times. The for loop connected to an end statement sets up a repeating calculation loop

% This script computes the roots of the characteristic% equation
G(s) = s^3 + 2 s^2 + 4 s + K for 0 < K < 20 K= [0:0.5:20]; % 0 < K < 20
for i=1: length(K) % for loop
q= [1 2 4 K(i)];
p(:,i)=roots(q) end
figure (1) plot(real(p),imag(p),'x'), grid
xlabel('Real axis') ylabel('lmaginary axis')
gtext('K < 7') % Writing text on graphic gtext('K = 7')
gtext('K > 7')
num=[1]; den=[1 2 4 8];
sysg=tf(num,den);
sys=feedback(sysg,[1]);
pole(sys) % poles of closed loop system

 step(sys,100);

Task:

1. Consider the closed loop system shown in figure 3. Find the range of gain K that will cause system to be stable,
unstable and marginally stable. Plot step response for three values of K

2. Given the forward-path transfer function of unity-feedback control system
 𝐺𝐺 (𝑠𝑠) = 𝐾𝐾(𝑠𝑠+10)+(𝑠𝑠+20)

𝑠𝑠2 (𝑠𝑠+2)

Apply the Routh-Hurwitz criterion to determine the stability of the closed-loop system as a function of K. Determine the
value of K that will cause sustained constant-amplitude oscillations in the system. Determine the frequency of
oscillations.

Figure 8. 3 unity feedback close loop system

36

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-305 Instrumentation & Control

Laboratory Session No. Date:

 Software Use Rubric

Criterion
Level of Attainment

Below Average
(1)

Average
(2)

Good
(3)

Very Good
(4)

Excellent
(5)

Identification of software
menu (syntax,
components, commands,
tools, layout etc.).

Can’t identify
software menus.

Rarely
identifies
software
menus.

Occasionally
identifies
software
menus.

Able to
identify
software
menus.

Perfectly able to
identify software
menus.

Skills to use software
(schematic, syntax,
commands, tools, layout)
efficiently.

Can’t use
software
efficiently.

Rarely uses
software
efficiently.

Occasionally
uses software
efficiently.

Often uses
software
efficiently.

Efficiently uses
software (syntax,
commands, tools,
layout)

Adherence to safety
procedures and handling
of equipment (computing
unit, peripheral devices,
and other equipment in
lab).

Doesn’t handle
equipment with
required care and
safety.

Rarely handles
equipment
with required
care and
safety.

Occasionally
handles
equipment
with required
care and
safety.

Often handles
equipment
with required
care and
safety.

Handles
equipment with
required care and
safety.

Ability to troubleshoot
software errors
(detection and
debugging).

Not able to
troubleshoot the
errors

Rarely able to
troubleshoot
the errors

Occasionally
able to
troubleshoot
the errors

Often able to
troubleshoot
the errors

Fully able to
troubleshoot the
errors

Analysis and
interpretation of
results/outputs.

Not able to
analyze and
interpret
results/outputs.

Rarely able to
perform the
analysis and
interpretation.

Occasionally
able to
perform the
analysis and
interpretation.

Often able to
perform the
analysis and
interpretation.

Perfectly able
to perform the
analysis and
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

37

Lab Experiment # 09

Objective:
Trace the characteristics of the each of proportional (P), the integral (I), and the derivative (D) controls and obtain a
desired response by using them.

Equipment:
PCs with installed MATLAB

Theory:
Consider the following unity feedback system:

Plant: A system to be controlled.
Controller: Provides excitation for the plant; Designed to control the overall system behavior
The three-term controller: The transfer function of the PID controller looks like the following:

𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐶𝐶𝑠𝑠 =
𝐾𝐾𝐶𝐶𝑠𝑠2 + 𝐾𝐾𝑃𝑃𝑠𝑠 + 𝐾𝐾𝐼𝐼

𝑠𝑠

KP = Proportional gain
KI = Integral gain
KD = Derivative gain
First, let's take a look at how the PID controller works in a closed-loop system using the schematic shown.

Figure 9. 2 PID Controller with close loop control system

The variable (e) represents the tracking error, the difference between the desired input value (R) and the actual output
(Y).
This error signal (e) will be sent to the PID controller, and
The controller computes both the derivative and the integral of this error signal.
The signal (u) just past the controller is now equal to the proportional gain (KP) times the magnitude of the error plus the
integral gain (KI) times the integral of the error plus the derivative gain (KD) times the derivative of the error
This signal (u) will be sent to the plant, and the new output (Y) will be obtained.

𝑢𝑢 = 𝐾𝐾𝑃𝑃𝑒𝑒(𝑡𝑡) + 𝐾𝐾𝐼𝐼 �𝑒𝑒(𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝐾𝐾𝐶𝐶
𝑑𝑑𝑒𝑒(𝑡𝑡)
𝑑𝑑𝑡𝑡

This new output (Y) will be sent back to the sensor again to find the new error signal (e). The controller takes this new
error signal and computes its derivatives and its internal again. The process goes on and on

Procedure:

Figure 9. 1 unity feedback system

38

For a simple mass, spring, and damper problem

The transfer function between the displacement X(s) and the input F(s) then becomes:

𝑋𝑋(𝑠𝑠)
𝐹𝐹(𝑠𝑠)

=
1

𝑀𝑀𝑠𝑠2 + 𝐵𝐵𝑠𝑠 + 𝐾𝐾

Let
 M = 1kg
 b = 10 N.s/m
 k = 20 N/m
 F(s) = 1
 Plug these values into the above transfer function

𝑋𝑋(𝑠𝑠)
𝐹𝐹(𝑠𝑠)

=
1

𝑠𝑠2 + 10𝑠𝑠 + 20

The goal of this problem is to show you how each of Kp, Ki and Kd contribute to obtain
• Fast rise time
• Minimum overshoot
• No steady-state error

Open-loop step response:
Let's first view the open-loop step response.
MATLAB command window should give you the plot shown below:

Figure 9. 4 Open loop step response

>>num=1;
>>den=[1 10 20];
>>plant= tf(num,den);

Figure 9. 3 Mass Spring System

39

>>step(plant)
• 0.05 is the final value of the output to a unit step input.
• This corresponds to the steady-state error of 0.95, quite large indeed.
• Furthermore, the rise time is about one second, and the settling time is about 1.5 seconds.
• Let's design a controller that will reduce the rise time, reduce the settling time, and eliminates the

steady-state error
Proportional Control:
The closed-loop transfer function of the above system with a proportional controller is:

Figure 9. 5 Proportional Controller with control System

𝑋𝑋(𝑠𝑠)
𝐹𝐹(𝑠𝑠)

=
𝐾𝐾𝑃𝑃

𝑠𝑠2 + 10𝑠𝑠 + (20 + 𝐾𝐾𝑃𝑃)

Let the proportional gain (KP) equal 300:
 MATLAB PROGRAM:

Kp=300;
contr=Kp;
sys_cl=feedback(contr*plant,1); %by default –ve feedback t=0:0.01:2;
step(sys_cl,t)

Proportinal Derivative Control:

The closed-loop transfer function of the given system with a PD controller is:
𝑋𝑋(𝑠𝑠)
𝐹𝐹(𝑠𝑠)

=
𝐾𝐾𝐶𝐶𝑠𝑠 + 𝐾𝐾𝑃𝑃

𝑠𝑠2 + (10 + 𝐾𝐾𝐶𝐶)𝑠𝑠 + (20 + 𝐾𝐾𝑃𝑃)

Let 𝐾𝐾𝑃𝑃 = 300 as before and let 𝐾𝐾𝐷𝐷 = 10
Proportional-Derivative control:

Kp=300;
Kd=10;
contr=tf([Kd Kp],1);
sys_cl=feedback(contr*plant,1);
t=0:0.01:2;
step(sys_cl,t)

Figure 9. 6 Proportional and Derivative controller with control system

40

Proportional-Integral control:
The closed-loop transfer function of the given system with a PI controller is:

Figure 9. 7 Proportional and Integral controller with control system

𝑋𝑋(𝑠𝑠)
𝐹𝐹(𝑠𝑠) =

𝐾𝐾𝑃𝑃𝑠𝑠 + 𝐾𝐾𝐼𝐼
𝑠𝑠3 + 10𝑠𝑠2 + (20 + 𝐾𝐾𝑃𝑃)𝑠𝑠 + 𝐾𝐾𝐼𝐼

Let KP equal 30 and let KI equal 70
Kp=30;
Ki=70;
contr=tf([Kp Ki],[1 0]);
sys_cl=feedback(contr*plant,1);
t=0:0.01:2;
step(sys_cl,t)
Proportional-Integral-Derivative control:

Now, let's take a look at a PID controller. The closed-loop transfer function of the given system with a PID controller is;
𝑋𝑋(𝑠𝑠)
𝐹𝐹(𝑠𝑠) =

𝐾𝐾𝐶𝐶𝑠𝑠2 + 𝐾𝐾𝑃𝑃𝑠𝑠 + 𝐾𝐾𝐼𝐼
𝑠𝑠3 + (10+𝐾𝐾𝐶𝐶)𝑠𝑠2 + (20 + 𝐾𝐾𝑃𝑃)𝑠𝑠 + 𝐾𝐾𝐼𝐼

After several trial-and-error runs, the gains Kp=350, Ki=300, and Kd=50 provided the desired response
Kp=350;
KI=300;
D=50;
contr=tf([Kd Kp Ki],[1 0]);
sys_cl=feedback(contr*plant,1);
t=0:0.01:2;
step(sys_cl,t)
Observations:

CL Response Rise time Overshoot time Settling time S-S error
KP
KP and KI
KP and KD

 KP, KI and KD
Table 9. 1 Result of Proportional, Integral & Derivative Controller

Figure 9. 8 Proportional Integral and Derivative controller with control system

41

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-305 Instrumentation & Control

Laboratory Session No. Date:

 Software Use Rubric

Criterion
Level of Attainment

Below Average
(1)

Average
(2)

Good
(3)

Very Good
(4)

Excellent
(5)

Identification of software
menu (syntax,
components, commands,
tools, layout etc.).

Can’t identify
software menus.

Rarely
identifies
software
menus.

Occasionally
identifies
software
menus.

Able to
identify
software
menus.

Perfectly able to
identify software
menus.

Skills to use software
(schematic, syntax,
commands, tools, layout)
efficiently.

Can’t use
software
efficiently.

Rarely uses
software
efficiently.

Occasionally
uses software
efficiently.

Often uses
software
efficiently.

Efficiently uses
software (syntax,
commands, tools,
layout)

Adherence to safety
procedures and handling
of equipment (computing
unit, peripheral devices,
and other equipment in
lab).

Doesn’t handle
equipment with
required care and
safety.

Rarely handles
equipment
with required
care and
safety.

Occasionally
handles
equipment
with required
care and
safety.

Often handles
equipment
with required
care and
safety.

Handles
equipment with
required care and
safety.

Ability to troubleshoot
software errors
(detection and
debugging).

Not able to
troubleshoot the
errors

Rarely able to
troubleshoot
the errors

Occasionally
able to
troubleshoot
the errors

Often able to
troubleshoot
the errors

Fully able to
troubleshoot the
errors

Analysis and
interpretation of
results/outputs.

Not able to
analyze and
interpret
results/outputs.

Rarely able to
perform the
analysis and
interpretation.

Occasionally
able to
perform the
analysis and
interpretation.

Often able to
perform the
analysis and
interpretation.

Perfectly able
to perform the
analysis and
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

42

Lab Experiment # 10
Objective:
Build the designing of P, PD, PI, and PID controllers to meet closed-loop performance specifications including
transient performance and steady error.

Equipment:
PCs with installed MATLAB

Theory:

For this lab, we will assume a unity feedback controller of the form shown in Figure 10.1, were
𝐶𝐶(𝑠𝑠)the controller transfer is function and 𝑃𝑃(𝑠𝑠) is the plant transfer function

Recall that the first step to any root locus controller design is computing the defect angle, which can be interpreted
as how far a set of desired second order closed-loop poles are from being on the root locus. The larger the magnitude
of the defect angle, the “further” those desired closed loop poles are from being on the root locus. Once you know
the defect angle, you can make an informed decision for controller structure. With controller structure specified, the
defect angle prescribes the relative locations of the poles and zeros.

Note, in controller design there are multiple possible solutions, some better than others. It is possible to have multiple
designs that satisfy the given performance constraints, but practical implementation issues and cost could be
prohibitive for some designs. As a general rule, it is a good idea to keep your controller as simple as possible while
meeting the prescribed performance criteria. In this lab we will be investigating several controller structures on
individual plants and comparing the design process and performance. The common controller structures we will be
using in this lab are listed in Table 1 along with their respective transfer functions.

Table 10. 1 Common Controller Types

Controller Type Controller Structure
Proportional (P) 𝐶𝐶(𝑠𝑠) = 𝑘𝑘𝑝𝑝
Integral (I) 𝑘𝑘i

𝐶𝐶(𝑠𝑠) =
𝑠𝑠

Proportional + Integral (PI) 𝑘𝑘i 𝑘𝑘(𝑠𝑠 + 𝑧𝑧)
𝐶𝐶(𝑠𝑠) = 𝑘𝑘𝑝𝑝 +

𝑠𝑠
=

𝑠𝑠

Lag Controller 𝑘𝑘𝑉𝑉(𝑠𝑠 + 𝑧𝑧)
𝐶𝐶(𝑠𝑠) = , 𝑤𝑤ℎ𝑒𝑒𝑠𝑠𝑒𝑒 |𝑧𝑧| > |𝑝𝑝| (𝑠𝑠

+ 𝑝𝑝)
Proportional + Derivative (PD) 𝐶𝐶(𝑠𝑠) = 𝑘𝑘𝑝𝑝 + 𝑘𝑘𝑑𝑑𝑠𝑠 = 𝑘𝑘(𝑠𝑠 + 𝑧𝑧)
Lead Controller 𝑘𝑘(𝑠𝑠 + 𝑧𝑧)

𝐶𝐶(𝑠𝑠) = , 𝑤𝑤ℎ𝑒𝑒𝑠𝑠𝑒𝑒 |𝑝𝑝| > |𝑧𝑧| (𝑠𝑠
+ 𝑝𝑝)

Proportional + Integral + Derivative (PID)
(Real zeros)

𝑘𝑘i 𝑘𝑘(𝑠𝑠 + 𝑧𝑧1)(𝑠𝑠 + 𝑧𝑧2)
𝐶𝐶(𝑠𝑠) = 𝑘𝑘𝑝𝑝 +

𝑠𝑠
+ 𝑘𝑘𝑑𝑑𝑠𝑠 =

𝑠𝑠

Figure 10. 1 Unity Feedback Control System

43

Proportional + Integral + Derivative (PID)
(Complex Conjugate zeros)

𝑘𝑘i 𝑘𝑘(𝑠𝑠 + 𝑧𝑧)(𝑠𝑠 + 𝑧𝑧*)
𝐶𝐶(𝑠𝑠) = 𝑘𝑘𝑝𝑝 +

𝑠𝑠
+ 𝑘𝑘𝑑𝑑𝑠𝑠 =

𝑠𝑠

Introduction to MATLAB ‘’sisotool:

A. Getting Started
1. Enter the transfer function for the plant, in your workspace (i.e., from the MATLAB command

prompt).
2. Type „sisotool‟ at the command prompt.
3. Click „close‟ when the help window comes up.

B. Loading the Transfer Function
1. We will usually be assigning to block „G‟ (the plant). Under Control System Tab, click on Edit

Architecture. Against block name G type P in the value space. Select OK.
C. Generating the Step Response and the Control Effort Plot

1. You can now click on the pink boxes on the root locus (the current closed-loop poles for the given
gain) and move them along the root locus. Essentially, you are exploring different controller gain
values by doing this. Note how the step response changes as you move the closed-loop pole
locations.

2. The values of the closed-loop poles will appear at the bottom of the root locus window as you click
and hold the mouse on the pink boxes representing them. This only gives you the value of the closed
loop pole you are clicking on. If you need the other closed-loop pole locations, you will have to
click on them on each of the other branches.

D. Adding Design Constraints
1. Right-click on the root locus plot. From the menu that pops-up, select Design Requirements

New… to add constraints or Design Requirements Edit… to edit existing constraints

1. At this point, point you can choose from settling time, percent overshoot, damping ratio, and
natural frequency constraints.

Task:

1. Use the plant given

𝑃𝑃(𝑠𝑠) =
30

𝑠𝑠2 + 11𝑠𝑠 + 30
=

30
(𝑠𝑠 + 5)(𝑠𝑠 + 6)

This is a second order system with two real poles located at -5 and -6. Our goal is to speed up the closed-loop
system response so that the two percent settling time is less than 1 second, produce a position error of 0.1 or less,
and keep percent overshoot less than 10%. To keep things reasonable, keep the gain, 𝑘𝑘 less than 10 for all designs.

Now make a PID controller with real zeros at -7 and -8. Determine the root locus for this system. Find a
value of on this root locus so that percent overshoot is less than 2% and the settling time is less than 0.02
seconds. (Remember to keep 𝑘𝑘 < 10.) Save the step response and the controller that produced it.

44

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL-305 Instrumentation & Control

Laboratory Session No. Date:

 Software Use Rubric

Criterion
Level of Attainment

Below Average
(1)

Average
(2)

Good
(3)

Very Good
(4)

Excellent
(5)

Identification of software
menu (syntax,
components, commands,
tools, layout etc.).

Can’t identify
software menus.

Rarely
identifies
software
menus.

Occasionally
identifies
software
menus.

Able to
identify
software
menus.

Perfectly able to
identify software
menus.

Skills to use software
(schematic, syntax,
commands, tools, layout)
efficiently.

Can’t use
software
efficiently.

Rarely uses
software
efficiently.

Occasionally
uses software
efficiently.

Often uses
software
efficiently.

Efficiently uses
software (syntax,
commands, tools,
layout)

Adherence to safety
procedures and handling
of equipment (computing
unit, peripheral devices,
and other equipment in
lab).

Doesn’t handle
equipment with
required care and
safety.

Rarely handles
equipment
with required
care and
safety.

Occasionally
handles
equipment
with required
care and
safety.

Often handles
equipment
with required
care and
safety.

Handles
equipment with
required care and
safety.

Ability to troubleshoot
software errors
(detection and
debugging).

Not able to
troubleshoot the
errors

Rarely able to
troubleshoot
the errors

Occasionally
able to
troubleshoot
the errors

Often able to
troubleshoot
the errors

Fully able to
troubleshoot the
errors

Analysis and
interpretation of
results/outputs.

Not able to
analyze and
interpret
results/outputs.

Rarely able to
perform the
analysis and
interpretation.

Occasionally
able to
perform the
analysis and
interpretation.

Often able to
perform the
analysis and
interpretation.

Perfectly able
to perform the
analysis and
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

45

Lab Experiment # 11
Objective:
Derive the relationship between frequency response and step response characteristics using MATLAB

Equipment:
PCs with installed MATLAB

Theory:
The frequency response is the steady state response of a system to a sinusoidal input; the category is the plot of the
magnitude of the output in dB versus frequency using logarithmic scale, and the phase shift versus frequency as shown
in figure below:

The frequency response characteristics of the system can be obtained directly from the sinusoidal transfer function in
which "s" is replaced by "jω", where "ω" is the frequency. Consider the linear time invariant system shown in figure
below where the transfer function is G(s) and the input is a sinusoidal and it is given by X (t) and the output is Y (t):

To completely characterize a linear system in the frequency domain we must specify both the amplitude ratio and the
phase angle as function of frequency

|𝐺𝐺(𝑗𝑗𝑤𝑤)| = �𝑌𝑌(𝑗𝑗𝑤𝑤)
𝑋𝑋(𝑗𝑗𝑤𝑤)�

< 𝐺𝐺(𝑗𝑗𝑤𝑤) ≤ 𝑌𝑌(𝑗𝑗𝑤𝑤)
𝑋𝑋(𝑗𝑗𝑤𝑤)

There are some terms associated with Bode Plot

Figure 11. 1 Frequency response of a control system

Figure 11. 2 Linear time invariant system

46

Resonant Peak 𝑀𝑀𝑠𝑠

The resonant peak 𝑀𝑀𝑠𝑠 is the maximum value of|𝑀𝑀(j𝜔𝜔) |

𝑀𝑀𝑟𝑟 =
1

2𝜁𝜁�1 − 𝜁𝜁2

𝑀𝑀𝑟𝑟 = 1, 𝜁𝜁 = 0.707

Resonant Frequency 𝑚𝑚𝑠𝑠

The resonant frequency 𝜔𝜔𝑠𝑠 is the frequency at which the peak resonance 𝑀𝑀𝑠𝑠 occurs
𝑤𝑤𝑟𝑟 = 𝑤𝑤𝑛𝑛�1 − 2𝜁𝜁2

Bandwidth BW:
The bandwidth BW is the frequency at which |𝑀𝑀(j𝜔𝜔)| drops to 0.707 percent of, or 3dB down from, its zero-frequency
value.

𝐵𝐵𝐵𝐵 = 𝑤𝑤𝑛𝑛 �(1 − 2𝜁𝜁2) = �4𝜁𝜁4 − 4 𝜁𝜁2 + 2 �½

Example:
Find the steady state response for the system where the open loop transfer function is given by:
 𝐺𝐺(𝑠𝑠) = 64

𝑠𝑠2+8𝑠𝑠+64

n=64;
d=[1 8 6 4];
bode(n,d)
 grid on
w_n= input('Enter natural frequency: ');
zeta = input('Enter damping ratio: ');
if zeta >=0.707 M_r=1;

w_r = 0;
else

M_r=1/(2*zeta*sqrt(1-zeta^2));
w_r= w_n* sqrt(1-2*zeta*zeta);

end
BW=w_n*sqrt((1-2*zeta*zeta) +sqrt(4*zeta^4-4*zeta^2+2));
figure
sys=tf(n,d);
step(sys)
grid on

47

Task:

1. Consider the forward-path transfer functions of unity-feedback control system as:

𝐺𝐺(𝑠𝑠) =
4

𝑠𝑠2 + 3𝑠𝑠 + 4

• Using MATLAB, find frequency response and step response of the system.
• With the help of MATLAB, determine bandwidth and rise time of the system.
• For the stated values of zeta and natural frequency in the table below, find bandwidth and rise time.
• Analyze the obtained results and find a relationship between time-domain and frequency domain

parameters.
• Discuss their effect on pole-zero map

Figure 9. 9 Step response of the system

Figure 11. 3 Close-loop frequency response

Figure 11. 4 Step Response of a system
Table 11. 4 Step Response of the System

48

Table 9. 1 ωn = 2

ζ BW tr

0.1

0.2

0.4

0.7

1

 Table 9. 2 ζ = 0.75

ωn BW tr

1

2

5

10

20

49

NED University of Engineering & Technology

Department of Electronic Engineering

Course Code and Title: EL-305 Instrumentation & Control

Laboratory Session No. Date:

 Software Use Rubric

Criterion
Level of Attainment

Below Average
(1)

Average
(2)

Good
(3)

Very Good
(4)

Excellent
(5)

Identification of software
menu (syntax,
components, commands,
tools, layout etc.).

Can’t identify
software menus.

Rarely
identifies
software
menus.

Occasionally
identifies
software
menus.

Able to
identify
software
menus.

Perfectly able to
identify software
menus.

Skills to use software
(schematic, syntax,
commands, tools, layout)
efficiently.

Can’t use
software
efficiently.

Rarely uses
software
efficiently.

Occasionally
uses software
efficiently.

Often uses
software
efficiently.

Efficiently uses
software (syntax,
commands, tools,
layout)

Adherence to safety
procedures and handling
of equipment (computing
unit, peripheral devices,
and other equipment in
lab).

Doesn’t handle
equipment with
required care and
safety.

Rarely handles
equipment
with required
care and
safety.

Occasionally
handles
equipment
with required
care and
safety.

Often handles
equipment
with required
care and
safety.

Handles
equipment with
required care and
safety.

Ability to troubleshoot
software errors
(detection and
debugging).

Not able to
troubleshoot the
errors

Rarely able to
troubleshoot
the errors

Occasionally
able to
troubleshoot
the errors

Often able to
troubleshoot
the errors

Fully able to
troubleshoot the
errors

Analysis and
interpretation of
results/outputs.

Not able to
analyze and
interpret
results/outputs.

Rarely able to
perform the
analysis and
interpretation.

Occasionally
able to
perform the
analysis and
interpretation.

Often able to
perform the
analysis and
interpretation.

Perfectly able
to perform the
analysis and
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

50

Lab Experiment # 12
Objective:
Do the plotting of Root Loci with MATLAB

Equipment:
PCs with installed MATLAB

Theory:
Root locus analysis is a graphical method for examining how the roots of a system change with variation of a certain
system parameter, commonly gain within a feedback system. The root locus plots the poles of the closed loop transfer
function in the complex s plane as a function of a gain parameter. The path that closed loop poles attain when the value
of k changes is called Root Locus. The path of root locus can be of any shape. It starts with the open loop pole and
ends at the open loop zero. Root locus effects on stability, steady state error. Here k changes from 0 to ∞. At k=0 the
position of poles of open loop system and closed loop system is same but by increasing k, the position of closed loop
pole will change only. The rules of the root locus give us a clear and precise understanding of the endless patterns that
can be created by an infinite set of characteristic equations. The command rlocus (GH, K) allows us to specify the
range of gain K for plotting the root locus. Also study the commands [p,K]=rlocus(GH) and [p]=rlocus(GH,K) using
MATLAB.

Procedure:
Example 1:
Consider the system shown in the block diagram of Fig. 1

Figure 12. 1 Close Loop system

The characteristic equation of the system is with

𝐺𝐺(𝑠𝑠) =
𝐾𝐾

𝑠𝑠(𝑠𝑠 + 7)(𝑠𝑠 + 11)

The following MATLAB script plots the root loci for 0 < 𝐾𝐾 < ∞

s = tf('s');
G = 1/(s*(s+7)*(s+11));
rlocus(G);
axis equal;

Clicking at the point of intersection of the root locus with the imaginary axis gives the data shown in Fig. 12.2. We
find that the closed-loop system is stable for 𝐾𝐾 < 1360; and unstable for 𝐾𝐾 > 1360.

51

Figure 12. 2 Root Locus Plot

Figure 3 shows step responses for two values of K.
>> K = 860;
>> step(feedback(K*G,1),’b’,5)
>> hold; % Current plot held
>> K = 1460;
>> step(feedback(K*G,1),’g’,5)

Figure 12. 3 Step responses for two values of K.

Example 2:
Consider the system shown in Figure 4.

Figure 12. 4 Close Loop system

The plant transfer function G(s) is given as

𝐺𝐺(𝑠𝑠) =
𝑠𝑠 + 1

𝑠𝑠(0.1𝑠𝑠 − 1)

The following MATLAB script plots the root locus for the closed-loop system.

52

clear all;
close all;
s = tf('s');
G = (s+1)/(s*(0.1*s-1));
rlocus(G);
axis equal;
sgrid;
title('Root locus for (s+1)/s(0.1s-1)');
[K,p]=rlocfind(G)

Figure 12. 5 Root Locus plot

selected_point = -2.2204 + 3.0099i
K =
1.4494
p =
-2.2468 + 3.0734i
-2.2468 - 3.0734i

Example 3
For a unity feedback system with open-loop transfer function

𝐺𝐺(𝑠𝑠) =
𝐾𝐾(𝑠𝑠2 − 4𝑠𝑠 = 20)

(𝑠𝑠 + 2)(𝑠𝑠 + 4)

a root locus plot shown in Fig. 6 has been generated using the following MATLAB code.
s = tf('s');
G = (s^2-4*s+20)/ ((s+2) *(s+4));
rlocus(G);
zeta = 0.45;
wn = 0;
sgrid(zeta,wn);
Properly redefine the axes of the root locus using Right click --> Properties -->
Limits.

53

Figure 12. 6 Root Locus plot

Clicking on the intersection of the root locus with 𝑧𝑧𝑒𝑒𝑡𝑡𝑎𝑎 = 0.45 line gives the system
gain 𝐾𝐾 = 0.415 that corresponds to closed-loop poles with Clicking on the
intersection of the root locus with the real axis gives the breakaway point and the
gain at that point

Task

1. Sketch the root loci for the system shown in Figure 10.7. (The gain K is assumed to be positive.) Observe that
for small or large values of K the system is overdamped and for medium values of K it is underdamped.

Figure 12. 7 Close Loop Control System

2. Consider the system shown in Figure 8. Plot the root loci with MATLAB. Locate the closed-loop poles when
the gain K is set equal to 2

Figure 12. 8 Close Loop Control System

54

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-305 Instrumentation & Control

Laboratory Session No. Date:

 Software Use Rubric

Criterion
Level of Attainment

Below Average
(1)

Average
(2)

Good
(3)

Very Good
(4)

Excellent
(5)

Identification of software
menu (syntax,
components, commands,
tools, layout etc.).

Can’t identify
software menus.

Rarely
identifies
software
menus.

Occasionally
identifies
software
menus.

Able to
identify
software
menus.

Perfectly able to
identify software
menus.

Skills to use software
(schematic, syntax,
commands, tools, layout)
efficiently.

Can’t use
software
efficiently.

Rarely uses
software
efficiently.

Occasionally
uses software
efficiently.

Often uses
software
efficiently.

Efficiently uses
software (syntax,
commands, tools,
layout)

Adherence to safety
procedures and handling
of equipment (computing
unit, peripheral devices,
and other equipment in
lab).

Doesn’t handle
equipment with
required care and
safety.

Rarely handles
equipment
with required
care and
safety.

Occasionally
handles
equipment
with required
care and
safety.

Often handles
equipment
with required
care and
safety.

Handles
equipment with
required care and
safety.

Ability to troubleshoot
software errors
(detection and
debugging).

Not able to
troubleshoot the
errors

Rarely able to
troubleshoot
the errors

Occasionally
able to
troubleshoot
the errors

Often able to
troubleshoot
the errors

Fully able to
troubleshoot the
errors

Analysis and
interpretation of
results/outputs.

Not able to
analyze and
interpret
results/outputs.

Rarely able to
perform the
analysis and
interpretation.

Occasionally
able to
perform the
analysis and
interpretation.

Often able to
perform the
analysis and
interpretation.

Perfectly able
to perform the
analysis and
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

55

Lab Experiment # 13
Objective:
Design control system for ball and beam system for the stated requirements

Equipment:
PCs with installed MATLAB

Theory:
The open-loop transfer function of the plant for the ball and beam example is given below

𝑅𝑅(𝑠𝑠)
θ(S)

=
𝑚𝑚𝑠𝑠𝑑𝑑

𝐿𝐿(1
𝑅𝑅2 + 𝑚𝑚2)

1
𝑠𝑠2

Let, m = 0.111; R = 0.015; g = -9.8; L = 1.0; d = 0.03; J = 9.99e-6

The design criteria for this problem are:

• Settling time less than <last digit of your NED seat no.> seconds
• Overshoot less than <third last and second last digit of your NED seat no.>%

For example, if your seat no. is 12345, then the design criteria will be

• Settling time less than 5 seconds
• Overshoot less than 34%

A schematic of the closed loop system with a controller is given below:

The common controller structures are listed in Table 1 along with their respective transfer functions. You can choose
a controller from the table below for meeting the design requirements. Discuss the corresponding reason for
selection.

Table 13. 1 Common Controller Types
Controller Type Controller Structure

Proportional (P) 𝐶𝐶(𝑠𝑠) = 𝑘𝑘𝑝𝑝
Integral (I) 𝑘𝑘i

 𝐶𝐶(𝑠𝑠) =
𝑠𝑠

Proportional + Integral (PI) 𝐶𝐶(𝑠𝑠) = 𝑘𝑘𝑝𝑝 +
𝑘𝑘𝑠𝑠
𝑠𝑠

=
𝑘𝑘(𝑠𝑠 + 𝑧𝑧)

𝑠𝑠

Lag Controller
𝐶𝐶(𝑠𝑠) =

𝑘𝑘𝑐𝑐(𝑠𝑠 + 𝑧𝑧)
(𝑠𝑠 + 𝑝𝑝)

,𝑤𝑤ℎ𝑒𝑒𝑠𝑠𝑒𝑒|𝑧𝑧|

> |𝑝𝑝|

Figure 13. 1 Generic Unity Feedback Control System

56

Proportional + Derivative (PD) 𝐶𝐶(𝑠𝑠) = 𝑘𝑘𝑝𝑝 + 𝑘𝑘𝑑𝑑𝑠𝑠 = 𝑘𝑘(𝑠𝑠 + 𝑧𝑧)
Lead Controller

𝐶𝐶(𝑠𝑠) =
𝑘𝑘(𝑠𝑠 + 𝑧𝑧)
(𝑠𝑠 + 𝑝𝑝)

,𝑤𝑤ℎ𝑒𝑒𝑠𝑠𝑒𝑒|𝑝𝑝| > |𝑧𝑧|

Proportional + Integral + Derivative (PID)
(Real zeros) 𝐶𝐶(𝑠𝑠) = 𝑘𝑘𝑝𝑝 +

𝑘𝑘𝑠𝑠
𝑠𝑠

+ 𝑘𝑘𝑑𝑑𝑠𝑠 =
𝑘𝑘(𝑠𝑠 + 𝑧𝑧1)(𝑠𝑠 + 𝑧𝑧2)

𝑠𝑠

Proportional + Integral + Derivative (PID)
(Complex Conjugate zeros) 𝐶𝐶(𝑠𝑠) = 𝑘𝑘𝑝𝑝 +

𝑘𝑘𝑠𝑠
𝑠𝑠

+ 𝑘𝑘𝑑𝑑𝑠𝑠 =
𝑘𝑘(𝑠𝑠 + 𝑧𝑧)(𝑠𝑠 + 𝑧𝑧∗)

𝑠𝑠

Deliverables

A complete lab report including the following:

• Figures with plots of open loop and closed-loop step responses.
• Controller parameters, gain, pole(s), and zero(s), for each of the controller design along with their

response and compare.
• Report properly with MATLAB codes and respective plots based on root locus and bode methods.

57

NED University of Engineering & Technology
Department of Electronic Engineering

Course Code and Title: EL-305 Instrumentation & Control

Laboratory Session No. Date:

 Software Use Rubric

Criterion
Level of Attainment

Below Average
(1)

Average
(2)

Good
(3)

Very Good
(4)

Excellent
(5)

Identification of software
menu (syntax,
components, commands,
tools, layout etc.).

Can’t identify
software menus.

Rarely
identifies
software
menus.

Occasionally
identifies
software
menus.

Able to
identify
software
menus.

Perfectly able to
identify software
menus.

Skills to use software
(schematic, syntax,
commands, tools, layout)
efficiently.

Can’t use
software
efficiently.

Rarely uses
software
efficiently.

Occasionally
uses software
efficiently.

Often uses
software
efficiently.

Efficiently uses
software (syntax,
commands, tools,
layout)

Adherence to safety
procedures and handling
of equipment (computing
unit, peripheral devices,
and other equipment in
lab).

Doesn’t handle
equipment with
required care and
safety.

Rarely handles
equipment
with required
care and
safety.

Occasionally
handles
equipment
with required
care and
safety.

Often handles
equipment
with required
care and
safety.

Handles
equipment with
required care and
safety.

Ability to troubleshoot
software errors
(detection and
debugging).

Not able to
troubleshoot the
errors

Rarely able to
troubleshoot
the errors

Occasionally
able to
troubleshoot
the errors

Often able to
troubleshoot
the errors

Fully able to
troubleshoot the
errors

Analysis and
interpretation of
results/outputs.

Not able to
analyze and
interpret
results/outputs.

Rarely able to
perform the
analysis and
interpretation.

Occasionally
able to
perform the
analysis and
interpretation.

Often able to
perform the
analysis and
interpretation.

Perfectly able
to perform the
analysis and
interpretation.

Weighted CLO (Score)

Remarks

Instructor’s Signature with Date

	1. create a MATLAB-function RLC.m
	Transfer Function
	 Rise Time ‘Tr’:
	 Peak Time ‘Tp’:
	Overshoot:
	Settling Time ‘Ts’:
	Delay Time ‘Td’:

	Observations:
	[y,t]=lsim(n,d,u,t)
	Routh Stability Analysis
	Stability Design via Routh Criteria
	Resonant Frequency 𝑚𝑟
	Deliverables

